These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 3800911

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Role of the malate--aspartate shuttle in renal sodium transport in the rat.
    Ross B, Silva P, Bullock S.
    Clin Sci (Lond); 1981 Apr; 60(4):419-26. PubMed ID: 7249531
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A study of regulation of gluconeogenesis and the supply of cytosolic reducing equivalents for lactate formation in rat kidney-cortical-tubule fragments incubated with pyruvate.
    Saggerson ED.
    Biochem J; 1978 Jul 15; 174(1):131-42. PubMed ID: 212019
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. 3-Aminopicolinate inhibits phosphoenolpyruvate carboxykinase in hepatocytes and increases release of gluconeogenic precursors from peripheral tissues.
    Chen KS, Lardy HA.
    J Biol Chem; 1984 Jun 10; 259(11):6920-4. PubMed ID: 6725275
    [Abstract] [Full Text] [Related]

  • 8. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R, Katz J.
    Biochem J; 1970 Feb 10; 116(3):483-91. PubMed ID: 5435692
    [Abstract] [Full Text] [Related]

  • 9. Serine synthesis by an isolated perfused rat kidney preparation.
    Scaduto RC, Davis EJ.
    Biochem J; 1985 Sep 01; 230(2):303-11. PubMed ID: 2864920
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Energy requirements for metabolic and excretory activities of perfused rat kidney.
    Ross BD, Bullock S.
    Curr Probl Clin Biochem; 1976 Sep 01; 6():86-98. PubMed ID: 1001016
    [Abstract] [Full Text] [Related]

  • 14. Estimation of the relative contributions of enhanced production of oxalacetate and inhibition of pyruvate kinase to acute hormonal stimulation of gluconeogenesis in rat hepatocytes. An analysis of the effects of glucagon, angiotensin II, and dexamethasone on gluconeogenic flux from lactate/pyruvate.
    Sistare FD, Haynes RC.
    J Biol Chem; 1985 Oct 15; 260(23):12761-8. PubMed ID: 4044608
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Subcellular localization of PEPCK and metabolism of gluconeogenic substrains of renal cell lines.
    Holcomb T, Curthoys NP, Gstraunthaler G.
    Am J Physiol; 1995 Feb 15; 268(2 Pt 1):C449-57. PubMed ID: 7864084
    [Abstract] [Full Text] [Related]

  • 17. Quinolinate inhibition of gluconeogenesis is dependent on cytosolic oxalacetate concentration. An explanation for the differential inhibition of lactate and pyruvate gluconeogenesis.
    Gabbay RA.
    FEBS Lett; 1985 Sep 23; 189(2):367-72. PubMed ID: 2931305
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Stimulation by glucose of gluconeogenesis in hepatocytes isolated from starved rats.
    Rigoulet M, Leverve XM, Plomp PJ, Meijer AJ.
    Biochem J; 1987 Aug 01; 245(3):661-8. PubMed ID: 3663184
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.