These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


395 related items for PubMed ID: 3800973

  • 21. Signal transduction pathways of muscarinic receptors in circular smooth muscle from the rabbit caecum.
    Cuq P, Magous R, Bali JP.
    Mol Cell Biochem; 1994 Nov 09; 140(1):65-71. PubMed ID: 7877599
    [Abstract] [Full Text] [Related]

  • 22. Prostaglandins and muscarinic agonists induce cyclic AMP attenuation by two distinct mechanisms in the pregnant-rat myometrium. Interaction between cyclic AMP and Ca2+ signals.
    Goureau O, Tanfin Z, Harbon S.
    Biochem J; 1990 Nov 01; 271(3):667-73. PubMed ID: 1700899
    [Abstract] [Full Text] [Related]

  • 23. Regulation of muscarinic agonist-induced activation of phosphoinositidase C in electrically permeabilized SH-SY5Y human neuroblastoma cells by guanine nucleotides.
    Wojcikiewicz RJ, Lambert DG, Nahorski SR.
    J Neurochem; 1990 Feb 01; 54(2):676-85. PubMed ID: 2153757
    [Abstract] [Full Text] [Related]

  • 24. Evidence that a guanine nucleotide-binding protein linked to a muscarinic receptor inhibits directly phospholipase C.
    Bizzarri C, Di Girolamo M, D'Orazio MC, Corda D.
    Proc Natl Acad Sci U S A; 1990 Jun 01; 87(12):4889-93. PubMed ID: 2162060
    [Abstract] [Full Text] [Related]

  • 25. Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin.
    Kikuchi A, Kozawa O, Kaibuchi K, Katada T, Ui M, Takai Y.
    J Biol Chem; 1986 Sep 05; 261(25):11558-62. PubMed ID: 3091591
    [Abstract] [Full Text] [Related]

  • 26. Role of a protein regulating guanine nucleotide binding in phosphoinositide breakdown and calcium mobilization by bradykinin in neuroblastoma X glioma hybrid NG108-15 cells: effects of pertussis toxin and cholera toxin on receptor-mediated signal transduction.
    Osugi T, Imaizumi T, Mizushima A, Uchida S, Yoshida H.
    Eur J Pharmacol; 1987 Jun 04; 137(2-3):207-18. PubMed ID: 2886351
    [Abstract] [Full Text] [Related]

  • 27. Regulation of inositol trisphosphate accumulation by muscarinic cholinergic and H1-histamine receptors on human astrocytoma cells. Differential induction of desensitization by agonists.
    Nakahata N, Harden TK.
    Biochem J; 1987 Jan 15; 241(2):337-44. PubMed ID: 3593197
    [Abstract] [Full Text] [Related]

  • 28. Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells.
    Orellana SA, Solski PA, Brown JH.
    J Biol Chem; 1985 May 10; 260(9):5236-9. PubMed ID: 2985584
    [Abstract] [Full Text] [Related]

  • 29. Muscarinic receptors in canine colonic circular smooth muscle. II. Signal transduction pathways.
    Zhang LB, Buxton IL.
    Mol Pharmacol; 1991 Dec 10; 40(6):952-9. PubMed ID: 1661840
    [Abstract] [Full Text] [Related]

  • 30. Involvement of a pertussis toxin-sensitive G protein-coupled phospholipase A2 in agonist-stimulated arachidonic acid release in membranes isolated from bovine iris sphincter smooth muscle.
    Yousufzai SY, Abdel-Latif AA.
    Membr Biochem; 1993 Dec 10; 10(1):29-42. PubMed ID: 8510560
    [Abstract] [Full Text] [Related]

  • 31. Guanine nucleotide regulation of phospholipase C activity in permeabilized rabbit neutrophils. Inhibition by pertussis toxin and sensitization to submicromolar calcium concentrations.
    Bradford PG, Rubin RP.
    Biochem J; 1986 Oct 01; 239(1):97-102. PubMed ID: 3541923
    [Abstract] [Full Text] [Related]

  • 32. Mastoparan inhibits phosphoinositide hydrolysis via pertussis toxin-insensitive [corrected] G-protein in human astrocytoma cells.
    Nakahata N, Abe MT, Matsuoka I, Nakanishi H.
    FEBS Lett; 1990 Jan 15; 260(1):91-4. PubMed ID: 2153579
    [Abstract] [Full Text] [Related]

  • 33. Evidence that the epidermal growth factor receptor and non-tyrosine kinase hormone receptors stimulate phosphoinositide hydrolysis by independent pathways.
    Hepler JR, Jeffs RA, Huckle WR, Outlaw HE, Rhee SG, Earp HS, Harden TK.
    Biochem J; 1990 Sep 01; 270(2):337-44. PubMed ID: 1698055
    [Abstract] [Full Text] [Related]

  • 34. H1-histamine receptors on human astrocytoma cells.
    Nakahata N, Martin MW, Hughes AR, Hepler JR, Harden TK.
    Mol Pharmacol; 1986 Feb 01; 29(2):188-95. PubMed ID: 2419744
    [Abstract] [Full Text] [Related]

  • 35. Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery.
    Kobayashi S, Somlyo AP, Somlyo AV.
    J Physiol; 1988 Sep 01; 403():601-19. PubMed ID: 3150985
    [Abstract] [Full Text] [Related]

  • 36. Pertussis toxin does not inhibit muscarinic-receptor-mediated phosphoinositide hydrolysis or calcium mobilization.
    Masters SB, Martin MW, Harden TK, Brown JH.
    Biochem J; 1985 May 01; 227(3):933-7. PubMed ID: 2988509
    [Abstract] [Full Text] [Related]

  • 37. Characterization of GTP-binding proteins coupled to inhibition of adenylyl cyclase in guinea pig tracheal epithelial cells.
    Yang J, Emala CW, Hirshman CA, Proud D, Jacoby DB, Levine MA.
    Am J Respir Cell Mol Biol; 1994 Jun 01; 10(6):665-72. PubMed ID: 8003343
    [Abstract] [Full Text] [Related]

  • 38. Activation of G proteins by (Rp) and (Sp) diastereomers of guanosine 5'-[beta-thio]triphosphate in hamster fibroblasts. Differential stereospecificity of Gi, Gs and Gp.
    Paris S, Eckstein F.
    Biochem J; 1992 Jun 01; 284 ( Pt 2)(Pt 2):327-32. PubMed ID: 1318029
    [Abstract] [Full Text] [Related]

  • 39. Phospholipase C isoforms in vascular smooth muscle and their regulation by G-proteins.
    Blayney LM, Gapper PW, Newby AC.
    Br J Pharmacol; 1996 Jun 01; 118(4):1003-11. PubMed ID: 8799575
    [Abstract] [Full Text] [Related]

  • 40. Carbachol in the presence of guanosine 5'-O-(3-thiotriphosphate) stimulates the breakdown of exogenous phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol by rat brain membranes.
    Claro E, Wallace MA, Lee HM, Fain JN.
    J Biol Chem; 1989 Nov 05; 264(31):18288-95. PubMed ID: 2553703
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.