These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 38012604

  • 1. Quantitative CT parameters combined with preoperative systemic inflammatory markers for differentiating risk subgroups of thymic epithelial tumors.
    Gao R, Zhou J, Zhang J, Zhu J, Wang T, Yan C.
    BMC Cancer; 2023 Nov 27; 23(1):1158. PubMed ID: 38012604
    [Abstract] [Full Text] [Related]

  • 2. The maximal contrast-enhanced range of CT for differentiating the WHO pathological subtypes and risk subgroups of thymic epithelial tumors.
    Yu C, Li T, Yang X, Xin L, Zhao Z, Yang Z, Zhang R.
    Br J Radiol; 2023 Oct 27; 96(1150):20221076. PubMed ID: 37486626
    [Abstract] [Full Text] [Related]

  • 3. Pretreatment serum neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios: Two tumor-related systemic inflammatory markers in patients with thymic epithelial tumors.
    Wang L, Ruan M, Yan H, Lei B, Sun X, Chang C, Liu L, Xie W.
    Cytokine; 2020 Sep 27; 133():155149. PubMed ID: 32512341
    [Abstract] [Full Text] [Related]

  • 4. Development and validation of a CT-texture analysis nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes.
    Ren C, Li M, Zhang Y, Zhang S.
    Cancer Imaging; 2020 Dec 11; 20(1):86. PubMed ID: 33308325
    [Abstract] [Full Text] [Related]

  • 5. Radiomics Analysis of Multiphasic Computed Tomography Images for Distinguishing High-Risk Thymic Epithelial Tumors From Low-Risk Thymic Epithelial Tumors.
    Liufu Y, Wen Y, Wu W, Su R, Liu S, Li J, Pan X, Chen K, Guan Y.
    J Comput Assist Tomogr; 2020 Dec 11; 47(2):220-228. PubMed ID: 36877755
    [Abstract] [Full Text] [Related]

  • 6. Dual-energy CT perfusion imaging for differentiating WHO subtypes of thymic epithelial tumors.
    Yu C, Li T, Zhang R, Yang X, Yang Z, Xin L, Zhao Z.
    Sci Rep; 2020 Mar 26; 10(1):5511. PubMed ID: 32218504
    [Abstract] [Full Text] [Related]

  • 7. Role of quantitative energy spectrum CT parameters in differentiating thymic epithelial tumours and thymic cysts.
    Zhou Q, Huang X, Xie Y, Liu X, Li S, Zhou J.
    Clin Radiol; 2022 Feb 26; 77(2):136-141. PubMed ID: 34857380
    [Abstract] [Full Text] [Related]

  • 8. Contrast-enhanced CT-based radiomics model for differentiating risk subgroups of thymic epithelial tumors.
    Yu C, Li T, Yang X, Zhang R, Xin L, Zhao Z, Cui J.
    BMC Med Imaging; 2022 Mar 06; 22(1):37. PubMed ID: 35249531
    [Abstract] [Full Text] [Related]

  • 9. Computed tomography radiomic feature analysis of thymic epithelial tumors: Differentiation of thymic epithelial tumors from thymic cysts and prediction of histological subtypes.
    Zhao W, Ozawa Y, Hara M, Okuda K, Hiwatashi A.
    Jpn J Radiol; 2024 Apr 06; 42(4):367-373. PubMed ID: 38010596
    [Abstract] [Full Text] [Related]

  • 10. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via (18)F-FDG PET/CT.
    Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS.
    Ann Nucl Med; 2016 May 06; 30(4):309-19. PubMed ID: 26868139
    [Abstract] [Full Text] [Related]

  • 11. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis?
    Jeong YJ, Lee KS, Kim J, Shim YM, Han J, Kwon OJ.
    AJR Am J Roentgenol; 2004 Aug 06; 183(2):283-9. PubMed ID: 15269013
    [Abstract] [Full Text] [Related]

  • 12. Diagnostic and prognostic values of 2-[18F]FDG PET/CT in resectable thymic epithelial tumour.
    Han S, Kim YI, Oh JS, Seo SY, Park MJ, Lee GD, Choi S, Kim HR, Kim YH, Kim DK, Park SI, Ryu JS.
    Eur Radiol; 2022 Feb 06; 32(2):1173-1183. PubMed ID: 34448035
    [Abstract] [Full Text] [Related]

  • 13. Differentiating invasive thymic epithelial tumors from mediastinal lung cancer using spectral CT parameters.
    Deng L, Yang J, Jing M, Zhang B, Han T, Zhang Y, Zhou J.
    Jpn J Radiol; 2023 Sep 06; 41(9):973-982. PubMed ID: 37071247
    [Abstract] [Full Text] [Related]

  • 14. A radiomics model to predict the invasiveness of thymic epithelial tumors based on contrast‑enhanced computed tomography.
    Chen X, Feng B, Li C, Duan X, Chen Y, Li Z, Liu Z, Zhang C, Long W.
    Oncol Rep; 2020 Apr 06; 43(4):1256-1266. PubMed ID: 32323834
    [Abstract] [Full Text] [Related]

  • 15. Development and validation of a deep learning radiomics nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes.
    Chen X, Feng B, Xu K, Chen Y, Duan X, Jin Z, Li K, Li R, Long W, Liu X.
    Eur Radiol; 2023 Oct 06; 33(10):6804-6816. PubMed ID: 37148352
    [Abstract] [Full Text] [Related]

  • 16. Is (18)F-FDG PET useful in predicting the WHO grade of malignancy in thymic epithelial tumors? A meta-analysis.
    Treglia G, Sadeghi R, Giovanella L, Cafarotti S, Filosso P, Lococo F.
    Lung Cancer; 2014 Oct 06; 86(1):5-13. PubMed ID: 25175317
    [Abstract] [Full Text] [Related]

  • 17. Quantitative computed tomography texture analysis for estimating histological subtypes of thymic epithelial tumors.
    Yasaka K, Akai H, Nojima M, Shinozaki-Ushiku A, Fukayama M, Nakajima J, Ohtomo K, Kiryu S.
    Eur J Radiol; 2017 Jul 06; 92():84-92. PubMed ID: 28624025
    [Abstract] [Full Text] [Related]

  • 18. The efficacy of 18F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors.
    Nakajo M, Takeda A, Katsuki A, Jinguji M, Ohmura K, Tani A, Sato M, Yoshiura T.
    Br J Radiol; 2022 Jun 01; 95(1134):20211050. PubMed ID: 35312337
    [Abstract] [Full Text] [Related]

  • 19. Differentiating low-risk thymomas from high-risk thymomas: preoperative radiomics nomogram based on contrast enhanced CT to minimize unnecessary invasive thoracotomy.
    Gao C, Yang L, Xu Y, Wang T, Ding H, Gao X, Li L.
    BMC Med Imaging; 2024 Aug 01; 24(1):197. PubMed ID: 39090610
    [Abstract] [Full Text] [Related]

  • 20. Volume-based quantification using dual-energy computed tomography in the differentiation of thymic epithelial tumours: an initial experience.
    Chang S, Hur J, Im DJ, Suh YJ, Hong YJ, Lee HJ, Kim YJ, Han K, Kim DJ, Lee CY, Shin HY, Choi BW.
    Eur Radiol; 2017 May 01; 27(5):1992-2001. PubMed ID: 27553938
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.