These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 38017586

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Mean amplitude deviation calculated from raw acceleration data: a novel method for classifying the intensity of adolescents' physical activity irrespective of accelerometer brand.
    Aittasalo M, Vähä-Ypyä H, Vasankari T, Husu P, Jussila AM, Sievänen H.
    BMC Sports Sci Med Rehabil; 2015; 7():18. PubMed ID: 26251724
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Systematic review of accelerometer-based methods for 24-h physical behavior assessment in young children (0-5 years old).
    Lettink A, Altenburg TM, Arts J, van Hees VT, Chinapaw MJM.
    Int J Behav Nutr Phys Act; 2022 Sep 08; 19(1):116. PubMed ID: 36076221
    [Abstract] [Full Text] [Related]

  • 10. Classifying physical activity levels using Mean Amplitude Deviation in adults using a chest worn accelerometer: validation of the Vivalink ECG Patch.
    Luckhurst J, Hughes C, Shelley B.
    BMC Sports Sci Med Rehabil; 2024 Oct 10; 16(1):212. PubMed ID: 39390591
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Cross-validation of Actigraph derived accelerometer cut-points for assessment of sedentary behaviour and physical activity in children aged 8-11 years.
    Duncan MJ, Eyre ELJ, Cox V, Roscoe CMP, Faghy MA, Tallis J, Dobell A.
    Acta Paediatr; 2020 Sep 10; 109(9):1825-1830. PubMed ID: 31984545
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Calibration and Cross-Validation of Accelerometer Cut-Points to Classify Sedentary Time and Physical Activity from Hip and Non-Dominant and Dominant Wrists in Older Adults.
    Migueles JH, Cadenas-Sanchez C, Alcantara JMA, Leal-Martín J, Mañas A, Ara I, Glynn NW, Shiroma EJ.
    Sensors (Basel); 2021 May 11; 21(10):. PubMed ID: 34064790
    [Abstract] [Full Text] [Related]

  • 18. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N, Cabrera-Diego LA, Campbell D, Sanders G, Fairclough SJ, Korkontzelos I.
    Comput Methods Programs Biomed; 2021 Sep 11; 208():106165. PubMed ID: 34118492
    [Abstract] [Full Text] [Related]

  • 19. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.
    Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, Matheson D, Robinson TN.
    PLoS One; 2016 Sep 11; 11(3):e0150534. PubMed ID: 26938240
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.