These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 38020741

  • 1. Enhanced Carrier Collection in Cd/In-Based Dual Buffers in Kesterite Thin-Film Solar Cells from Nanoparticle Inks.
    Campbell S, Zoppi G, Bowen L, Maiello P, Barrioz V, Beattie NS, Qu Y.
    ACS Appl Energy Mater; 2023 Nov 13; 6(21):10883-10896. PubMed ID: 38020741
    [Abstract] [Full Text] [Related]

  • 2. Cadmium-Free Kesterite Thin-Film Solar Cells with High Efficiency Approaching 12.
    Ahmad N, Zhao Y, Ye F, Zhao J, Chen S, Zheng Z, Fan P, Yan C, Li Y, Su Z, Zhang X, Liang G.
    Adv Sci (Weinh); 2023 Sep 13; 10(26):e2302869. PubMed ID: 37391392
    [Abstract] [Full Text] [Related]

  • 3. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping.
    Korade SD, Gour KS, Karade VC, Jang JS, Rehan M, Patil SS, Bhat TS, Patil AP, Yun JH, Park J, Kim JH, Patil PS.
    ACS Appl Mater Interfaces; 2023 Dec 04. PubMed ID: 38047907
    [Abstract] [Full Text] [Related]

  • 4. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells.
    Duan B, Lou L, Meng F, Zhou J, Wang J, Shi J, Wu H, Luo Y, Li D, Meng Q.
    ACS Appl Mater Interfaces; 2021 Nov 24; 13(46):55243-55253. PubMed ID: 34751555
    [Abstract] [Full Text] [Related]

  • 5. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells.
    Xiao ZY, Yao B, Li YF, Ding ZH, Gao ZM, Zhao HF, Zhang LG, Zhang ZZ, Sui YR, Wang G.
    ACS Appl Mater Interfaces; 2016 Jul 13; 8(27):17334-42. PubMed ID: 27323648
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Chemically Deposited CdS Buffer/Kesterite Cu2ZnSnS4 Solar Cells: Relationship between CdS Thickness and Device Performance.
    Hong CW, Shin SW, Suryawanshi MP, Gang MG, Heo J, Kim JH.
    ACS Appl Mater Interfaces; 2017 Oct 25; 9(42):36733-36744. PubMed ID: 28980468
    [Abstract] [Full Text] [Related]

  • 9. Doping of Sb into Cu2ZnSn(S,Se)4 absorber layer via Se&Sb2Se3 co-selenization strategy for enhancing open-circuit voltage of kesterite solar cells.
    Zhao B, Deng Y, Cao L, Zhu J, Zhou Z.
    Front Chem; 2022 Oct 25; 10():974761. PubMed ID: 36017168
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.
    Werner M, Keller D, Haass SG, Gretener C, Bissig B, Fuchs P, La Mattina F, Erni R, Romanyuk YE, Tiwari AN.
    ACS Appl Mater Interfaces; 2015 Jun 10; 7(22):12141-6. PubMed ID: 25985349
    [Abstract] [Full Text] [Related]

  • 12. Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process.
    Chantana J, Kawano Y, Nishimura T, Kimoto Y, Kato T, Sugimoto H, Minemoto T.
    ACS Appl Mater Interfaces; 2020 May 13; 12(19):22298-22307. PubMed ID: 32320201
    [Abstract] [Full Text] [Related]

  • 13. Revealing the reason for enhanced CZTSSe device performance after Ag heavily doped into absorber surface.
    Wang S, Shen Z, Liu Y, Zhang Y.
    J Chem Phys; 2024 Mar 07; 160(9):. PubMed ID: 38445737
    [Abstract] [Full Text] [Related]

  • 14. N-Type Surface Design for p-Type CZTSSe Thin Film to Attain High Efficiency.
    Sun Y, Qiu P, Yu W, Li J, Guo H, Wu L, Luo H, Meng R, Zhang Y, Liu SF.
    Adv Mater; 2021 Dec 07; 33(49):e2104330. PubMed ID: 34623707
    [Abstract] [Full Text] [Related]

  • 15. Analysis of the Voltage Losses in CZTSSe Solar Cells of Varying Sn Content.
    Azzouzi M, Cabas-Vidani A, Haass SG, Röhr JA, Romanyuk YE, Tiwari AN, Nelson J.
    J Phys Chem Lett; 2019 Jun 06; 10(11):2829-2835. PubMed ID: 31070031
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Suppressing interface recombination in CZTSSe solar cells by simple selenization with synchronous interface gradient doping.
    Cui XP, Ma Q, Zhou WH, Kou DX, Zhou ZJ, Meng YN, Qi YF, Yuan SJ, Han LT, Wu SX.
    Nanoscale; 2022 Dec 22; 15(1):185-194. PubMed ID: 36475511
    [Abstract] [Full Text] [Related]

  • 18. Substitution of Ag for Cu in Cu2ZnSn(S,Se)4: Toward Wide Band Gap Absorbers with Low Antisite Defects for Thin Film Solar Cells.
    Wu Y, Sui Y, He W, Zeng F, Wang Z, Wang F, Yao B, Yang L.
    Nanomaterials (Basel); 2020 Jan 03; 10(1):. PubMed ID: 31947756
    [Abstract] [Full Text] [Related]

  • 19. Modulation of Field-Effect Passivation at the Back Electrode Interface Enabling Efficient Kesterite-Type Cu2ZnSn(S,Se)4 Thin-Film Solar Cells.
    Song Y, Sun H, Yao B, Li Y, Ding Z, Qin W, Zhang Z, Zhang L, Zhao H, Pan D.
    ACS Appl Mater Interfaces; 2020 Aug 26; 12(34):38163-38174. PubMed ID: 32846473
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.