These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Utilization and Mechanisms of Tannic Acid as a Depressant for Chalcopyrite and Pyrite Separation. Sun D, Li M, Zhang M, Cui R, Yang Z, Yu L, Wang D, Yao W. ACS Omega; 2023 Aug 22; 8(33):30474-30482. PubMed ID: 37636951 [Abstract] [Full Text] [Related]
6. Biodegradable acids for pyrite depression and green flotation separation - an overview. Asimi Neisiani A, Chehreh Chelgani S. Crit Rev Biotechnol; 2024 Sep 22; 44(6):1226-1240. PubMed ID: 37599429 [Abstract] [Full Text] [Related]
7. Enhancing flotation separation of chalcopyrite and magnesium silicate minerals by surface synergism between PAAS and GA. Chen Z, Wang Y, Luo L, Peng T, Guo F, Zheng M. Sci Rep; 2021 Mar 18; 11(1):6368. PubMed ID: 33737709 [Abstract] [Full Text] [Related]
8. Adsorption characteristics and mechanisms of O-Carboxymethyl chitosan on chalcopyrite and molybdenite. Yuan D, Cadien K, Liu Q, Zeng H. J Colloid Interface Sci; 2019 Sep 15; 552():659-670. PubMed ID: 31173994 [Abstract] [Full Text] [Related]
9. Effects of Sodium Alginate on the Flotation Separation of Molybdenite From Chalcopyrite Using Kerosene as Collector. Zeng G, Ou L, Zhang W, Zhu Y. Front Chem; 2020 Sep 15; 8():242. PubMed ID: 32411654 [Abstract] [Full Text] [Related]
10. The effect of molecular assembly between collectors and inhibitors on the flotation of pyrite and talc. Long T, Xiao W, Yang W. R Soc Open Sci; 2019 Oct 15; 6(10):191133. PubMed ID: 31824721 [Abstract] [Full Text] [Related]
12. Understanding the Interaction of Lignosulfonates for the Separation of Molybdenite and Chalcopyrite in Seawater Flotation Processes. Quiroz C, Murga R, Giraldo JD, Gutierrez L, Uribe L. Polymers (Basel); 2022 Jul 12; 14(14):. PubMed ID: 35890610 [Abstract] [Full Text] [Related]
14. Pullulan Polysaccharide as an Eco-Friendly Depressant for Flotation Separation of Chalcopyrite and Molybdenite. Yang W, Qiu T, Qiu X, Yan H, Jiao Q, Ding K, Zhao G. ACS Omega; 2024 Jul 09; 9(27):29557-29565. PubMed ID: 39005824 [Abstract] [Full Text] [Related]
15. Exploring the Mechanism of 4-Hydroxy-1,3,5-triazine-6-thiol Collector on Depressant-Free Flotation Separation of Galena from Sphalerite. Cheng C, Liu M, Qiu Z, Liu S, Yang L, Chen W, Liu G. Langmuir; 2024 Oct 01; 40(39):20811-20819. PubMed ID: 39302707 [Abstract] [Full Text] [Related]
16. Hetero-difunctional Reagent with Superior Flotation Performance to Chalcopyrite and the Associated Surface Interaction Mechanism. Liu S, Xie L, Liu G, Zhong H, Wang Y, Zeng H. Langmuir; 2019 Mar 26; 35(12):4353-4363. PubMed ID: 30802069 [Abstract] [Full Text] [Related]
17. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems. Niu X, Ruan R, Xia L, Li L, Sun H, Jia Y, Tan Q. Langmuir; 2018 Feb 27; 34(8):2716-2724. PubMed ID: 29377706 [Abstract] [Full Text] [Related]
18. Progressive Hydrophilic Processes of the Pyrite Surface in High-Alkaline Lime Systems. Zhang H, Wang R, Sun W, Zhu Y, Lin S, Zhang C. Langmuir; 2023 Jul 04; 39(26):9051-9059. PubMed ID: 37339381 [Abstract] [Full Text] [Related]