These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 38062454
21. Real-time feedback to improve gait in children with cerebral palsy. van Gelder L, Booth ATC, van de Port I, Buizer AI, Harlaar J, van der Krogt MM. Gait Posture; 2017 Feb; 52():76-82. PubMed ID: 27883988 [Abstract] [Full Text] [Related]
22. Effects of biofeedback treatment on gait in children with cerebral palsy. Dursun E, Dursun N, Alican D. Disabil Rehabil; 2004 Jan 21; 26(2):116-20. PubMed ID: 14668149 [Abstract] [Full Text] [Related]
23. The Efficacy of Ankle-Foot Orthoses on Improving the Gait of Children With Diplegic Cerebral Palsy: A Multiple Outcome Analysis. Ries AJ, Novacheck TF, Schwartz MH. PM R; 2015 Sep 21; 7(9):922-929. PubMed ID: 25771349 [Abstract] [Full Text] [Related]
24. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: a randomized controlled trial protocol. Begg R, Galea MP, James L, Sparrow WAT, Levinger P, Khan F, Said CM. Trials; 2019 May 31; 20(1):317. PubMed ID: 31151480 [Abstract] [Full Text] [Related]
28. Balance control via tactile biofeedback in children with cerebral palsy. Argunsah H, Yalcin B. Acta Bioeng Biomech; 2023 Jul 31; 25(1):161-171. PubMed ID: 38314571 [Abstract] [Full Text] [Related]
31. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S, Ohata K, Yoshida T, Yokoyama A, Yamada S. J Neuroeng Rehabil; 2020 Jul 03; 17(1):87. PubMed ID: 32620131 [Abstract] [Full Text] [Related]
32. Gradual increase of perturbation load induces a longer retention of locomotor adaptation in children with cerebral palsy. Tang R, Kim J, Gaebler-Spira DJ, Wu M. Hum Mov Sci; 2019 Feb 03; 63():20-33. PubMed ID: 30481722 [Abstract] [Full Text] [Related]
33. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy. Choi H, Wren TAL, Steele KM. Prosthet Orthot Int; 2017 Jun 03; 41(3):274-285. PubMed ID: 27613590 [Abstract] [Full Text] [Related]
35. Use of a Novel Functional Electrical Stimulation Gait Training System in 2 Adolescents With Cerebral Palsy: A Case Series Exploring Neurotherapeutic Changes. Behboodi A, Zahradka N, Alesi J, Wright H, Lee SCK. Phys Ther; 2019 Jun 01; 99(6):739-747. PubMed ID: 31155665 [Abstract] [Full Text] [Related]
36. Children With Cerebral Palsy Have Greater Stride-to-Stride Variability of Muscle Synergies During Gait Than Typically Developing Children: Implications for Motor Control Complexity. Kim Y, Bulea TC, Damiano DL. Neurorehabil Neural Repair; 2018 Sep 01; 32(9):834-844. PubMed ID: 30223739 [Abstract] [Full Text] [Related]
37. Effects of robot-assisted gait training alongside conventional therapy on the development of walking in children with cerebral palsy. Sucuoglu H. J Pediatr Rehabil Med; 2020 Sep 01; 13(2):127-135. PubMed ID: 32444570 [Abstract] [Full Text] [Related]
38. Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force. Uhlrich SD, Jackson RW, Seth A, Kolesar JA, Delp SL. Sci Rep; 2022 Jul 07; 12(1):9842. PubMed ID: 35798755 [Abstract] [Full Text] [Related]
39. Do children with cerebral palsy change their gait when walking over uneven ground? Malone A, Kiernan D, French H, Saunders V, O'Brien T. Gait Posture; 2015 Feb 07; 41(2):716-21. PubMed ID: 25724259 [Abstract] [Full Text] [Related]
40. Biomechanical effects of augmented ankle power output during human walking. Fickey SN, Browne MG, Franz JR. J Exp Biol; 2018 Nov 16; 221(Pt 22):. PubMed ID: 30266784 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]