These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 38062454
61. Effects of unilateral real-time biofeedback on propulsive forces during gait. Schenck C, Kesar TM. J Neuroeng Rehabil; 2017 Jun 06; 14(1):52. PubMed ID: 28583196 [Abstract] [Full Text] [Related]
62. Multi-joint gait clustering for children and youth with diplegic cerebral palsy. Kuntze G, Nettel-Aguirre A, Ursulak G, Robu I, Bowal N, Goldstein S, Emery CA. PLoS One; 2018 Jun 06; 13(10):e0205174. PubMed ID: 30356242 [Abstract] [Full Text] [Related]
63. Individual muscle force-energy rate is altered during crouch gait: A neuro-musculoskeletal evaluation. Ravera EP, Crespo MJ, Rozumalski A. J Biomech; 2022 Jun 06; 139():111141. PubMed ID: 35609492 [Abstract] [Full Text] [Related]
64. Muscle Synergies in Response to Biofeedback-Driven Gait Adaptations in Children With Cerebral Palsy. Booth ATC, van der Krogt MM, Harlaar J, Dominici N, Buizer AI. Front Physiol; 2019 Jun 06; 10():1208. PubMed ID: 31611807 [Abstract] [Full Text] [Related]
65. Biomechanical and perceived differences between overground and treadmill walking in children with cerebral palsy. Jung T, Kim Y, Kelly LE, Abel MF. Gait Posture; 2016 Mar 06; 45():1-6. PubMed ID: 26979874 [Abstract] [Full Text] [Related]
66. Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes in Ankle Muscle Coordination in Stroke Survivors: A Preliminary Study. Allen JL, Ting LH, Kesar TM. Front Neurol; 2018 Mar 06; 9():1127. PubMed ID: 30619077 [Abstract] [Full Text] [Related]
67. Predictors of Walking Efficiency in Children With Cerebral Palsy: Lower-Body Joint Angles, Moments, and Power. Noorkoiv M, Lavelle G, Theis N, Korff T, Kilbride C, Baltzopoulos V, Shortland A, Levin W, Ryan JM. Phys Ther; 2019 Jun 01; 99(6):711-720. PubMed ID: 31155663 [Abstract] [Full Text] [Related]
68. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy. Yoo JW, Lee DR, Sim YJ, You JH, Kim CJ. Biomed Mater Eng; 2014 Jun 01; 24(6):3613-8. PubMed ID: 25227075 [Abstract] [Full Text] [Related]
69. The validity and usability of an eight marker model for avatar-based biofeedback gait training. Booth ATC, van der Krogt MM, Buizer AI, Steenbrink F, Harlaar J. Clin Biomech (Bristol); 2019 Dec 01; 70():146-152. PubMed ID: 31499394 [Abstract] [Full Text] [Related]
70. The influence of wearing an ultrasound device on gait in children with cerebral palsy and typically developing children. Mooijekind B, Flux E, Buizer AI, van der Krogt MM, Bar-On L. Gait Posture; 2023 Mar 01; 101():138-144. PubMed ID: 36841120 [Abstract] [Full Text] [Related]
71. Robot-assisted gait training using a very small-sized Hybrid Assistive Limb® for pediatric cerebral palsy: A case report. Kuroda M, Nakagawa S, Mutsuzaki H, Mataki Y, Yoshikawa K, Takahashi K, Nakayama T, Iwasaki N. Brain Dev; 2020 Jun 01; 42(6):468-472. PubMed ID: 32249081 [Abstract] [Full Text] [Related]
72. Comparing the Lower-Limb Muscle Activation Patterns of Simulated Walking Using an End-Effector-Type Robot with Real Level and Stair Walking in Children with Spastic Bilateral Cerebral Palsy. Ahn Y, Hong J, Shim D, Choi JO, Rha DW. Sensors (Basel); 2023 Jul 21; 23(14):. PubMed ID: 37514872 [Abstract] [Full Text] [Related]
73. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Kao PC, Lewis CL, Ferris DP. J Biomech; 2010 Jan 19; 43(2):203-9. PubMed ID: 19878952 [Abstract] [Full Text] [Related]
74. Impact of a short walking exercise on gait kinematics in children with cerebral palsy who walk in a crouch gait. Parent A, Raison M, Pouliot-Laforte A, Marois P, Maltais DB, Ballaz L. Clin Biomech (Bristol); 2016 May 19; 34():18-21. PubMed ID: 27038653 [Abstract] [Full Text] [Related]
75. Strength Training Effects on Muscle Forces and Contributions to Whole-Body Movement in Cerebral Palsy. Hegarty AK, Kurz MJ, Stuberg W, Silverman AK. J Mot Behav; 2019 May 19; 51(5):496-510. PubMed ID: 30351246 [Abstract] [Full Text] [Related]
76. Does Ankle Exoskeleton Assistance Impair Stability During Walking in Individuals with Cerebral Palsy? Harvey TA, Conner BC, Lerner ZF. Ann Biomed Eng; 2021 Sep 19; 49(9):2522-2532. PubMed ID: 34189633 [Abstract] [Full Text] [Related]
77. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT). Ammann-Reiffer C, Bastiaenen CH, Meyer-Heim AD, van Hedel HJ. BMC Pediatr; 2017 Mar 02; 17(1):64. PubMed ID: 28253887 [Abstract] [Full Text] [Related]
79. Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking. Attias M, Bonnefoy-Mazure A, De Coulon G, Cheze L, Armand S. Gait Posture; 2016 Oct 02; 50():239-245. PubMed ID: 27665088 [Abstract] [Full Text] [Related]
80. Changes in soleus H-reflex modulation after treadmill training in children with cerebral palsy. Hodapp M, Vry J, Mall V, Faist M. Brain; 2009 Jan 02; 132(Pt 1):37-44. PubMed ID: 18984603 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]