These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 38062952

  • 1. [Heat Shock Proteins in Plant Protection from Oxidative Stress].
    Yurina NP.
    Mol Biol (Mosk); 2023; 57(6):949-964. PubMed ID: 38062952
    [Abstract] [Full Text] [Related]

  • 2. Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce.
    Kim T, Samraj S, Jiménez J, Gómez C, Liu T, Begcy K.
    BMC Plant Biol; 2021 Apr 17; 21(1):185. PubMed ID: 33865315
    [Abstract] [Full Text] [Related]

  • 3. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T.
    Mol Biol Rep; 2022 Jun 17; 49(6):5771-5785. PubMed ID: 35182323
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways.
    Swindell WR, Huebner M, Weber AP.
    BMC Genomics; 2007 May 22; 8():125. PubMed ID: 17519032
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses.
    Li PS, Yu TF, He GH, Chen M, Zhou YB, Chai SC, Xu ZS, Ma YZ.
    BMC Genomics; 2014 Nov 21; 15(1):1009. PubMed ID: 25416131
    [Abstract] [Full Text] [Related]

  • 8. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.
    Ikeda M, Mitsuda N, Ohme-Takagi M.
    Plant Physiol; 2011 Nov 21; 157(3):1243-54. PubMed ID: 21908690
    [Abstract] [Full Text] [Related]

  • 9. Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis.
    Wang X, Zhuang L, Shi Y, Huang B.
    Int J Mol Sci; 2017 Sep 15; 18(9):. PubMed ID: 28914758
    [Abstract] [Full Text] [Related]

  • 10. Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress.
    Liu X, Meng P, Yang G, Zhang M, Peng S, Zhai MZ.
    BMC Genomics; 2020 Jul 10; 21(1):474. PubMed ID: 32650719
    [Abstract] [Full Text] [Related]

  • 11. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses.
    Ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH.
    Int J Mol Sci; 2019 Oct 25; 20(21):. PubMed ID: 31731530
    [Abstract] [Full Text] [Related]

  • 12. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis.
    Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E.
    Plant Cell Environ; 2015 Apr 25; 38(4):693-709. PubMed ID: 25124075
    [Abstract] [Full Text] [Related]

  • 13. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress.
    Chauhan H, Khurana N, Agarwal P, Khurana P.
    Mol Genet Genomics; 2011 Aug 25; 286(2):171-87. PubMed ID: 21792744
    [Abstract] [Full Text] [Related]

  • 14. Molecular cloning and characterization of genes encoding Pennisetum glaucum ascorbate peroxidase and heat-shock factor: interlinking oxidative and heat-stress responses.
    Reddy RA, Kumar B, Reddy PS, Mishra RN, Mahanty S, Kaul T, Nair S, Sopory SK, Reddy MK.
    J Plant Physiol; 2009 Oct 15; 166(15):1646-59. PubMed ID: 19450902
    [Abstract] [Full Text] [Related]

  • 15. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S, Röth S, Schleiff E, Scharf KD.
    Plant Cell Environ; 2015 Sep 15; 38(9):1881-95. PubMed ID: 24995670
    [Abstract] [Full Text] [Related]

  • 16. Diversity of plant heat shock factors: regulation, interactions, and functions.
    Andrási N, Pettkó-Szandtner A, Szabados L.
    J Exp Bot; 2021 Feb 27; 72(5):1558-1575. PubMed ID: 33277993
    [Abstract] [Full Text] [Related]

  • 17. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis.
    Guan Q, Yue X, Zeng H, Zhu J.
    Plant Cell; 2014 Jan 27; 26(1):438-53. PubMed ID: 24415771
    [Abstract] [Full Text] [Related]

  • 18. StHsfB5 Promotes Heat Resistance by Directly Regulating the Expression of Hsp Genes in Potato.
    Zhu W, Xue C, Chen M, Yang Q.
    Int J Mol Sci; 2023 Nov 20; 24(22):. PubMed ID: 38003725
    [Abstract] [Full Text] [Related]

  • 19. [Heat shock transcription factor family in plants: a review].
    Zhang N, Wang Y, Wang Z, Yue Z, Niu Y.
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr 25; 37(4):1155-1167. PubMed ID: 33973432
    [Abstract] [Full Text] [Related]

  • 20. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis.
    Song C, Chung WS, Lim CO.
    Mol Cells; 2016 Jun 30; 39(6):477-83. PubMed ID: 27109422
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.