These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 38072409
1. Effects of Co-existing Heterotrophs on Physiology of and Nitrogen Metabolism in Autotrophic Nitrite-oxidizing Candidatus Nitrotoga. Ide H, Ishii K, Takahashi Y, Fujitani H, Tsuneda S. Microbes Environ; 2023; 38(4):. PubMed ID: 38072409 [Abstract] [Full Text] [Related]
2. Characterization of the First "Candidatus Nitrotoga" Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C, Schwarz J, Daebeler A, Mueller AJ, Lukumbuzya M, Romano S, Leisch N, Karst SM, Kirkegaard R, Albertsen M, Nielsen PH, Wagner M, Daims H. mBio; 2018 Jul 10; 9(4):. PubMed ID: 29991589 [Abstract] [Full Text] [Related]
3. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants. Lücker S, Schwarz J, Gruber-Dorninger C, Spieck E, Wagner M, Daims H. ISME J; 2015 Mar 10; 9(3):708-20. PubMed ID: 25180967 [Abstract] [Full Text] [Related]
4. Low Temperature and Neutral pH Define "Candidatus Nitrotoga sp." as a Competitive Nitrite Oxidizer in Coculture with Nitrospira defluvii. Wegen S, Nowka B, Spieck E. Appl Environ Microbiol; 2019 May 01; 85(9):. PubMed ID: 30824434 [Abstract] [Full Text] [Related]
5. Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. Boddicker AM, Mosier AC. ISME J; 2018 Dec 01; 12(12):2864-2882. PubMed ID: 30050164 [Abstract] [Full Text] [Related]
6. Enrichment and Physiological Characterization of a Cold-Adapted Nitrite-Oxidizing Nitrotoga sp. from an Eelgrass Sediment. Ishii K, Fujitani H, Soh K, Nakagawa T, Takahashi R, Tsuneda S. Appl Environ Microbiol; 2017 Jul 15; 83(14):. PubMed ID: 28500038 [Abstract] [Full Text] [Related]
8. Critical Factors Facilitating Candidatus Nitrotoga To Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. Zheng M, Li S, Ni G, Xia J, Hu S, Yuan Z, Liu Y, Huang X. Environ Sci Technol; 2020 Dec 01; 54(23):15414-15423. PubMed ID: 33180465 [Abstract] [Full Text] [Related]
9. Physiological and genomic characterization of a new 'Candidatus Nitrotoga' isolate. Ishii K, Fujitani H, Sekiguchi Y, Tsuneda S. Environ Microbiol; 2020 Jun 01; 22(6):2365-2382. PubMed ID: 32285573 [Abstract] [Full Text] [Related]
11. Meta-omics Reveal Gallionellaceae and Rhodanobacter Species as Interdependent Key Players for Fe(II) Oxidation and Nitrate Reduction in the Autotrophic Enrichment Culture KS. Huang YM, Straub D, Blackwell N, Kappler A, Kleindienst S. Appl Environ Microbiol; 2021 Jul 13; 87(15):e0049621. PubMed ID: 34020935 [Abstract] [Full Text] [Related]
12. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Spieck E, Wegen S, Keuter S. Appl Microbiol Biotechnol; 2021 Oct 13; 105(19):7123-7139. PubMed ID: 34508283 [Abstract] [Full Text] [Related]
13. Nitrotoga is selected over Nitrospira in newly assembled biofilm communities from a tap water source community at increased nitrite loading. Kinnunen M, Gülay A, Albrechtsen HJ, Dechesne A, Smets BF. Environ Microbiol; 2017 Jul 13; 19(7):2785-2793. PubMed ID: 28488787 [Abstract] [Full Text] [Related]
14. Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS. Tominski C, Heyer H, Lösekann-Behrens T, Behrens S, Kappler A. Appl Environ Microbiol; 2018 May 01; 84(9):. PubMed ID: 29500257 [Abstract] [Full Text] [Related]
15. Insights into Carbon Metabolism Provided by Fluorescence In Situ Hybridization-Secondary Ion Mass Spectrometry Imaging of an Autotrophic, Nitrate-Reducing, Fe(II)-Oxidizing Enrichment Culture. Tominski C, Lösekann-Behrens T, Ruecker A, Hagemann N, Kleindienst S, Mueller CW, Höschen C, Kögel-Knabner I, Kappler A, Behrens S. Appl Environ Microbiol; 2018 May 01; 84(9):. PubMed ID: 29500258 [Abstract] [Full Text] [Related]
16. Discovery of New Nitrite-Oxidizing Bacteria Increases Phylogenetic and Metabolic Diversity within This Niche. Capone DG. mBio; 2018 Sep 04; 9(5):. PubMed ID: 30181252 [Abstract] [Full Text] [Related]
17. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JS, Spieck E, Le Paslier D, Daims H. Proc Natl Acad Sci U S A; 2010 Jul 27; 107(30):13479-84. PubMed ID: 20624973 [Abstract] [Full Text] [Related]
18. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS. Nordhoff M, Tominski C, Halama M, Byrne JM, Obst M, Kleindienst S, Behrens S, Kappler A. Appl Environ Microbiol; 2017 Jul 01; 83(13):. PubMed ID: 28455336 [Abstract] [Full Text] [Related]
19. Autotrophic nitrogen removal in combined nitritation and Anammox systems through intermittent aeration and possible microbial interactions by quorum sensing analysis. Sun Y, Guan Y, Wang H, Wu G. Bioresour Technol; 2019 Jan 01; 272():146-155. PubMed ID: 30336396 [Abstract] [Full Text] [Related]
20. Genome Streamlining, Proteorhodopsin, and Organic Nitrogen Metabolism in Freshwater Nitrifiers. Podowski JC, Paver SF, Newton RJ, Coleman ML. mBio; 2022 Jun 28; 13(3):e0237921. PubMed ID: 35435701 [Abstract] [Full Text] [Related] Page: [Next] [New Search]