These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 38078869

  • 1. Coalescence-Induced Droplet Jumping for Electro-Thermal Sensing.
    Chettiar K, Ghaddar D, Birbarah P, Li Z, Kim M, Miljkovic N.
    Langmuir; 2023 Dec 26; 39(51):18909-18922. PubMed ID: 38078869
    [Abstract] [Full Text] [Related]

  • 2. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N, Preston DJ, Enright R, Wang EN.
    ACS Nano; 2013 Dec 23; 7(12):11043-54. PubMed ID: 24261667
    [Abstract] [Full Text] [Related]

  • 3. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y, Tso CY, Ho TC, Leung MKH, Yao S.
    ACS Appl Mater Interfaces; 2021 Mar 10; 13(9):11470-11479. PubMed ID: 33630565
    [Abstract] [Full Text] [Related]

  • 4. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P, Li Z, Pauls A, Miljkovic N.
    Langmuir; 2015 Jul 21; 31(28):7885-96. PubMed ID: 26110977
    [Abstract] [Full Text] [Related]

  • 5. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X, Weibel JA, Garimella SV.
    ACS Omega; 2017 Jun 30; 2(6):2883-2890. PubMed ID: 31457623
    [Abstract] [Full Text] [Related]

  • 6. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R, Xu S, Zhao D, Lee YC, Ma X, Yang R.
    ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44911-44921. PubMed ID: 29214806
    [Abstract] [Full Text] [Related]

  • 7. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.
    Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang EN.
    Nano Lett; 2013 Jan 09; 13(1):179-87. PubMed ID: 23190055
    [Abstract] [Full Text] [Related]

  • 8. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y, Yang X, Wang L, Li Y, Zhu D.
    ACS Appl Mater Interfaces; 2023 May 03; 15(17):21549-21561. PubMed ID: 37083343
    [Abstract] [Full Text] [Related]

  • 9. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P, Maeda Y, Lv F, Takata Y, Orejon D.
    ACS Appl Mater Interfaces; 2017 Oct 11; 9(40):35391-35403. PubMed ID: 28925681
    [Abstract] [Full Text] [Related]

  • 10. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A, Li H, Alhosani MH, Zhang T.
    ACS Appl Mater Interfaces; 2016 Aug 24; 8(33):21776-86. PubMed ID: 27486890
    [Abstract] [Full Text] [Related]

  • 11. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X, Wang P, Zhang D.
    ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):38276-38284. PubMed ID: 31529958
    [Abstract] [Full Text] [Related]

  • 12. Deep Learning Enabled Comprehensive Evaluation of Jumping-Droplet Condensation and Frosting.
    Chen L, Shi D, Kang X, Ma C, Zheng Q.
    ACS Appl Mater Interfaces; 2024 May 15; 16(19):25473-25482. PubMed ID: 38693061
    [Abstract] [Full Text] [Related]

  • 13. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X, Patel RS, Weibel JA, Garimella SV.
    Sci Rep; 2016 Jan 04; 6():18649. PubMed ID: 26725512
    [Abstract] [Full Text] [Related]

  • 14. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H, Chun JM, Sotelo J, Miljkovic N.
    ACS Nano; 2016 Sep 27; 10(9):8223-32. PubMed ID: 27447844
    [Abstract] [Full Text] [Related]

  • 15. Hierarchical Condensation.
    Yan X, Chen F, Sett S, Chavan S, Li H, Feng L, Li L, Zhao F, Zhao C, Huang Z, Miljkovic N.
    ACS Nano; 2019 Jul 23; 13(7):8169-8184. PubMed ID: 31265236
    [Abstract] [Full Text] [Related]

  • 16. Enhanced Jumping-Droplet Departure.
    Kim MK, Cha H, Birbarah P, Chavan S, Zhong C, Xu Y, Miljkovic N.
    Langmuir; 2015 Dec 15; 31(49):13452-66. PubMed ID: 26571384
    [Abstract] [Full Text] [Related]

  • 17. Electrostatic charging of jumping droplets.
    Miljkovic N, Preston DJ, Enright R, Wang EN.
    Nat Commun; 2013 Dec 15; 4():2517. PubMed ID: 24071721
    [Abstract] [Full Text] [Related]

  • 18. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y, Ke Z, Yang W, Wang Z, Zhang Y, Wu W.
    Langmuir; 2022 Aug 16; 38(32):9981-9991. PubMed ID: 35917142
    [Abstract] [Full Text] [Related]

  • 19. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q, Yan X, Li J, Li L, Cha H, Ding Y, Dang C, Jia L, Miljkovic N.
    Langmuir; 2020 Aug 18; 36(32):9510-9522. PubMed ID: 32689802
    [Abstract] [Full Text] [Related]

  • 20. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation.
    Mulroe MD, Srijanto BR, Ahmadi SF, Collier CP, Boreyko JB.
    ACS Nano; 2017 Aug 22; 11(8):8499-8510. PubMed ID: 28719740
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.