These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 38092240

  • 21. Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell.
    Das S, Ghangrekar MM.
    Environ Technol; 2020 Aug; 41(19):2546-2553. PubMed ID: 30681908
    [Abstract] [Full Text] [Related]

  • 22. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland.
    Tao M, Guan L, Jing Z, Tao Z, Wang Y, Luo H, Wang Y.
    Sci Total Environ; 2020 Mar 20; 709():136159. PubMed ID: 31887514
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.
    Mohamed HO, Obaid M, Sayed ET, Liu Y, Lee J, Park M, Barakat NAM, Kim HY.
    Bioprocess Biosyst Eng; 2017 Aug 20; 40(8):1151-1161. PubMed ID: 28526899
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. [Treatment of PTA Wastewater by Modified Anode Microbial Fuel Cell].
    Sun JY, Fan MJ, Chen YW, Zhu SM, Shen SB.
    Huan Jing Ke Xue; 2017 Jul 08; 38(7):2893-2900. PubMed ID: 29964630
    [Abstract] [Full Text] [Related]

  • 28. Functional collaboration of biofilm-cathode electrode and microbial fuel cell for biodegradation of methyl orange and simultaneous bioelectricity generation.
    Zou H, Wang Y.
    Environ Sci Pollut Res Int; 2019 Aug 08; 26(22):23061-23069. PubMed ID: 31187378
    [Abstract] [Full Text] [Related]

  • 29. Dual role of macrophytes in constructed wetland-microbial fuel cells using pyrrhotite as cathode material: A comparative assessment.
    Yang Y, Zhao Y, Tang C, Liu R, Chen T.
    Chemosphere; 2021 Jan 08; 263():128354. PubMed ID: 33297276
    [Abstract] [Full Text] [Related]

  • 30. Bioelectricity generation by natural microflora of septic tank wastewater (STWW) and biodegradation of persistent petrogenic pollutants by basidiomycetes fungi: An integrated microbial fuel cell system.
    Thulasinathan B, Jayabalan T, Sethupathi M, Kim W, Muniyasamy S, Sengottuvelan N, Nainamohamed S, Ponnuchamy K, Alagarsamy A.
    J Hazard Mater; 2021 Jun 15; 412():125228. PubMed ID: 33516103
    [Abstract] [Full Text] [Related]

  • 31. Promoting bioremediation of brewery wastewater, production of bioelectricity and microbial community shift by sludge microbial fuel cells using biochar as anode.
    Sun F, Chen J, Sun Z, Zheng X, Tang M, Yang Y.
    Sci Total Environ; 2024 Jun 15; 929():172418. PubMed ID: 38631622
    [Abstract] [Full Text] [Related]

  • 32. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.
    Kim J, Kim B, An J, Lee YS, Chang IS.
    Bioresour Technol; 2016 Aug 15; 213():140-145. PubMed ID: 26972026
    [Abstract] [Full Text] [Related]

  • 33. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing.
    Mansoorian HJ, Mahvi AH, Jafari AJ, Amin MM, Rajabizadeh A, Khanjani N.
    Enzyme Microb Technol; 2013 May 10; 52(6-7):352-7. PubMed ID: 23608504
    [Abstract] [Full Text] [Related]

  • 34. The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant.
    He W, Wallack MJ, Kim KY, Zhang X, Yang W, Zhu X, Feng Y, Logan BE.
    Water Res; 2016 Nov 15; 105():351-360. PubMed ID: 27639344
    [Abstract] [Full Text] [Related]

  • 35. Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential.
    Htet Htet H, Dolphen R, Jirasereeamornkul K, Thiravetyan P.
    Environ Sci Pollut Res Int; 2023 Sep 15; 30(42):96163-96180. PubMed ID: 37566335
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.
    Penteado ED, Fernandez-Marchante CM, Zaiat M, Gonzalez ER, Rodrigo MA.
    Environ Technol; 2017 Jun 15; 38(11):1333-1341. PubMed ID: 27603229
    [Abstract] [Full Text] [Related]

  • 38. Nitrogen oxide gas purification using carbon in water as reducing reagent with the aid of microbial fuel cell.
    Shi X, Zhao F, Cao C, Zhang H, Dang X, Huang T.
    J Hazard Mater; 2021 Mar 05; 405():124169. PubMed ID: 33127189
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell - constructed wetland treating carbon constraint wastewater.
    Tao M, Kong Y, Jing Z, Jia Q, Tao Z, Li YY.
    Bioresour Technol; 2022 Nov 05; 363():127902. PubMed ID: 36075346
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.