These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 38096577

  • 21. Theoretical Paradigm for Thermal Rectification via Phonon Filtering and Spectral Confinement.
    Donovan BF, Warzoha RJ.
    Phys Rev Lett; 2020 Feb 21; 124(7):075903. PubMed ID: 32142352
    [Abstract] [Full Text] [Related]

  • 22. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E, Walther JH, Megaridis CM, Koumoutsakos P, Zambrano HA.
    ACS Nano; 2017 Oct 24; 11(10):9997-10002. PubMed ID: 28953353
    [Abstract] [Full Text] [Related]

  • 23. Thermal Conductivity of Polyamide-6,6/Carbon Nanotube Composites: Effects of Tube Diameter and Polymer Linkage between Tubes.
    Keshtkar M, Mehdipour N, Eslami H.
    Polymers (Basel); 2019 Sep 07; 11(9):. PubMed ID: 31500250
    [Abstract] [Full Text] [Related]

  • 24. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols.
    Xie Z, Bâldea I, Nguyen QV, Frisbie CD.
    Nanoscale; 2021 Oct 14; 13(39):16755-16768. PubMed ID: 34604892
    [Abstract] [Full Text] [Related]

  • 25. A graphite thermal Tesla valve driven by hydrodynamic phonon transport.
    Huang X, Anufriev R, Jalabert L, Watanabe K, Taniguchi T, Guo Y, Ni Y, Volz S, Nomura M.
    Nature; 2024 Oct 14; 634(8036):1086-1090. PubMed ID: 39415020
    [Abstract] [Full Text] [Related]

  • 26. Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure.
    Zhang J, Wang X, Hong Y, Xiong Q, Jiang J, Yue Y.
    Nanotechnology; 2017 Jan 20; 28(3):035404. PubMed ID: 27966468
    [Abstract] [Full Text] [Related]

  • 27. Thermal rectification in a polymer-functionalized single-wall carbon nanotube.
    Pal S, Puri IK.
    Nanotechnology; 2014 Aug 29; 25(34):345401. PubMed ID: 25078473
    [Abstract] [Full Text] [Related]

  • 28. Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study.
    Zhang G, Dong S, Wang X, Xin G.
    Nanotechnology; 2023 Nov 15; 35(5):. PubMed ID: 37879323
    [Abstract] [Full Text] [Related]

  • 29. Phonon thermal rectification in hybrid graphene-[Formula: see text]: a molecular dynamics simulation.
    Farzadian O, Razeghiyadaki A, Spitas C, Kostas KV.
    Nanotechnology; 2020 Nov 27; 31(48):485401. PubMed ID: 32931472
    [Abstract] [Full Text] [Related]

  • 30. Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study.
    Zhang J, Jiang C, Jiang D, Peng HX.
    Phys Chem Chem Phys; 2014 Mar 07; 16(9):4378-85. PubMed ID: 24457262
    [Abstract] [Full Text] [Related]

  • 31. Thermal conductance bottleneck of a three dimensional graphene-CNT hybrid structure: a molecular dynamics simulation.
    Yu Z, Feng Y, Feng D, Zhang X.
    Phys Chem Chem Phys; 2019 Dec 18; 22(1):337-343. PubMed ID: 31815266
    [Abstract] [Full Text] [Related]

  • 32. Environment-dependent vibrational heat transport in molecular junctions: Rectification, quantum effects, vibrational mismatch.
    Behera J, Bandyopadhyay M.
    Phys Rev E; 2021 Jul 18; 104(1-1):014148. PubMed ID: 34412343
    [Abstract] [Full Text] [Related]

  • 33. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J, Meng L.
    ACS Omega; 2022 Aug 16; 7(32):28030-28040. PubMed ID: 35990432
    [Abstract] [Full Text] [Related]

  • 34. Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites.
    Liu F, Liu X, Hu N, Ning H, Atobe S, Yan C, Mo F, Fu S, Zhang J, Wang Y, Mu X.
    Sci Rep; 2017 Oct 31; 7(1):14700. PubMed ID: 29089620
    [Abstract] [Full Text] [Related]

  • 35. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.
    Subramaniam C, Yasuda Y, Takeya S, Ata S, Nishizawa A, Futaba D, Yamada T, Hata K.
    Nanoscale; 2014 Mar 07; 6(5):2669-74. PubMed ID: 24441433
    [Abstract] [Full Text] [Related]

  • 36. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M, Algaer E, Böhm MC, Müller-Plathe F.
    Nanotechnology; 2009 Mar 18; 20(11):115704. PubMed ID: 19420452
    [Abstract] [Full Text] [Related]

  • 37. Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats.
    Aitkaliyeva A, Chen D, Shao L.
    Sci Rep; 2013 Sep 27; 3():2774. PubMed ID: 24072072
    [Abstract] [Full Text] [Related]

  • 38. Heterogeneous irradiated-pristine polyethylene nanofiber junction as a high-performance solid-state thermal diode.
    Luo X, Luan Y, Cai Y, Shen S.
    Sci Rep; 2021 Mar 11; 11(1):5765. PubMed ID: 33707567
    [Abstract] [Full Text] [Related]

  • 39. Experimental Study on Thermal Conductivity and Rectification in Suspended Monolayer MoS2.
    Yang X, Zheng X, Liu Q, Zhang T, Bai Y, Yang Z, Chen H, Liu M.
    ACS Appl Mater Interfaces; 2020 Jun 24; 12(25):28306-28312. PubMed ID: 32478499
    [Abstract] [Full Text] [Related]

  • 40. Simulations of heat transport in single-molecule junctions: Investigations of the thermal diode effect.
    Wang JJ, Gong J, McGaughey AJH, Segal D.
    J Chem Phys; 2022 Nov 07; 157(17):174105. PubMed ID: 36347668
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.