These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 38128652
1. Using microalgae to reduce the use of conventional fertilizers in hydroponics and soil-based cultivation. Zhang Z, Xu M, Fan Y, Zhang L, Wang H. Sci Total Environ; 2024 Feb 20; 912():169424. PubMed ID: 38128652 [Abstract] [Full Text] [Related]
2. Can microalgae grown in wastewater reduce the use of inorganic fertilizers? Álvarez-González A, Uggetti E, Serrano L, Gorchs G, Ferrer I, Díez-Montero R. J Environ Manage; 2022 Dec 01; 323():116224. PubMed ID: 36126597 [Abstract] [Full Text] [Related]
3. The effects of microalgae use as a biofertilizer on soil and plant before and after its anaerobic (co-)digestion with food waste. Castro IMP, Rosa A, Borges A, Cunha F, Passos F. Sci Total Environ; 2024 Jul 15; 934():173301. PubMed ID: 38759922 [Abstract] [Full Text] [Related]
4. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Singh R, Shivay YS, Nain L. Environ Sci Pollut Res Int; 2016 Apr 15; 23(7):6608-20. PubMed ID: 26638970 [Abstract] [Full Text] [Related]
5. Microalgae-based biofertilizer improves fruit yield and controls greenhouse gas emissions in a hawthorn orchard. Ma F, Li Y, Han X, Li K, Zhao M, Guo L, Li S, Wang K, Qin K, Duan J, Liu Y, Xu Y. PLoS One; 2024 Apr 15; 19(8):e0307774. PubMed ID: 39093909 [Abstract] [Full Text] [Related]
6. Evaluating recycling fertilizers for tomato cultivation in hydroponics, and their impact on greenhouse gas emissions. Halbert-Howard A, Häfner F, Karlowsky S, Schwarz D, Krause A. Environ Sci Pollut Res Int; 2021 Nov 15; 28(42):59284-59303. PubMed ID: 32851526 [Abstract] [Full Text] [Related]
7. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Nayak M, Swain DK, Sen R. Sci Total Environ; 2019 Sep 10; 682():475-484. PubMed ID: 31128367 [Abstract] [Full Text] [Related]
8. Effect of Pennisetum giganteum z.x.lin mixed nitrogen-fixing bacterial fertilizer on the growth, quality, soil fertility and bacterial community of pakchoi (Brassica chinensis L.). Jia Y, Liao Z, Chew H, Wang L, Lin B, Chen C, Lu G, Lin Z. PLoS One; 2020 Sep 10; 15(2):e0228709. PubMed ID: 32049972 [Abstract] [Full Text] [Related]
9. The effects of microalgae-based fertilization of wheat on yield, soil microbiome and nitrogen oxides emissions. Shrestha RC, Ghazaryan L, Poodiack B, Zorin B, Gross A, Gillor O, Khozin-Goldberg I, Gelfand I. Sci Total Environ; 2022 Feb 01; 806(Pt 3):151320. PubMed ID: 34743875 [Abstract] [Full Text] [Related]
10. Application of microalgae Chlamydomonas applanata M9V and Chlorella vulgaris S3 for wheat growth promotion and as urea alternatives. Sido MY, Tian Y, Wang X, Wang X. Front Microbiol; 2022 Feb 01; 13():1035791. PubMed ID: 36523822 [Abstract] [Full Text] [Related]
13. Algae as Bio-fertilizers: Between current situation and future prospective. Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA. Saudi J Biol Sci; 2022 May 01; 29(5):3083-3096. PubMed ID: 35360501 [Abstract] [Full Text] [Related]
14. Evaluation of the fertilizer potential of Chlorella vulgaris and Scenedesmus obliquus grown in agricultural drainage water from maize fields. Alvarenga P, Martins M, Ribeiro H, Mota M, Guerra I, Cardoso H, Silva JL. Sci Total Environ; 2023 Feb 25; 861():160670. PubMed ID: 36473664 [Abstract] [Full Text] [Related]
15. Comprehensive assessment of combined inorganic and organic fertilization strategies on cotton cultivation: implications for sustainable agriculture. Lin S, Wang Q, Wei K, Zhao X, Tao W, Sun Y, Su L, Deng M. J Sci Food Agric; 2024 Nov 25; 104(14):8456-8468. PubMed ID: 38922898 [Abstract] [Full Text] [Related]
16. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJP, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Mar Drugs; 2023 Jan 28; 21(2):. PubMed ID: 36827134 [Abstract] [Full Text] [Related]
17. Treatment of drainage solution from hydroponic greenhouse production with microalgae. Hultberg M, Carlsson AS, Gustafsson S. Bioresour Technol; 2013 May 28; 136():401-6. PubMed ID: 23567708 [Abstract] [Full Text] [Related]
18. The biostimulating effects of viable microalgal cells applied to a calcareous soil: Increases in bacterial biomass, phosphorus scavenging, and precipitation of carbonates. Marks EAN, Montero O, Rad C. Sci Total Environ; 2019 Nov 20; 692():784-790. PubMed ID: 31539985 [Abstract] [Full Text] [Related]
19. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Ghafoor I, Habib-Ur-Rahman M, Ali M, Afzal M, Ahmed W, Gaiser T, Ghaffar A. Environ Sci Pollut Res Int; 2021 Aug 20; 28(32):43528-43543. PubMed ID: 33834341 [Abstract] [Full Text] [Related]
20. Development of a controlled release fertilizer by incorporating lauric acid into microalgal biomass: Dynamics on soil biological processes for efficient utilisation of waste resources. Srivastava K, Mickan BS, O'Connor J, Gurung SK, Moheimani NR, Jenkins SN. J Environ Manage; 2023 Oct 15; 344():118392. PubMed ID: 37384987 [Abstract] [Full Text] [Related] Page: [Next] [New Search]