These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 38131295

  • 21. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria.
    Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-Y-Terrón R, Martínez-Contreras RD.
    Microbiol Res; 2018 Mar; 208():85-98. PubMed ID: 29551215
    [Abstract] [Full Text] [Related]

  • 22. Understanding the Fermentation Potentiality For Gibberellic Acid (GA3) Production Using Fungi.
    Pandya JB, Patani AN, Raval VH, Rajput KN, Panchal RR.
    Curr Microbiol; 2023 Oct 24; 80(12):385. PubMed ID: 37874373
    [Abstract] [Full Text] [Related]

  • 23. Improving the productivity of gibberellic acid by combining small-molecule compounds-based targeting technology and transcriptomics analysis in Fusarium fujikuroi.
    Shi TQ, Shen YH, Li YW, Huang ZY, Nie ZK, Ye C, Wang YT, Guo Q.
    Bioresour Technol; 2024 Feb 24; 394():130299. PubMed ID: 38185446
    [Abstract] [Full Text] [Related]

  • 24. Mass spectral analysis of some derivatives and in vitro metabolites of steviol, the aglycone of the natural sweeteners, stevioside, rebaudioside A, and rubusoside.
    Compadre CM, Hussain RA, Nanayakkara NP, Pezzuto JM, Kinghorn AD.
    Biomed Environ Mass Spectrom; 1988 Feb 15; 15(4):211-22. PubMed ID: 3370361
    [Abstract] [Full Text] [Related]

  • 25. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10.
    Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ.
    BMC Microbiol; 2012 Jan 12; 12():3. PubMed ID: 22235902
    [Abstract] [Full Text] [Related]

  • 26. Co-expression of anti-miR319g and miRStv_11 lead to enhanced steviol glycosides content in Stevia rebaudiana.
    Saifi M, Yogindran S, Nasrullah N, Nissar U, Gul I, Abdin MZ.
    BMC Plant Biol; 2019 Jun 24; 19(1):274. PubMed ID: 31234787
    [Abstract] [Full Text] [Related]

  • 27. Improving Gibberellin GA3 Production with the Construction of a Genome-Scale Metabolic Model of Fusarium fujikuroi.
    Li YW, Qian JY, Huang JC, Guo DS, Nie ZK, Ye C, Shi TQ.
    J Agric Food Chem; 2023 Dec 06; 71(48):18890-18897. PubMed ID: 37931026
    [Abstract] [Full Text] [Related]

  • 28. [Research progress in biosynthesis and metabolism regulation of gibberellins in Gibberella fujikuroi].
    Wang B, Si W, Wu Y, Zhang X, Wang S, Wu C, Lin H, Yin L.
    Sheng Wu Gong Cheng Xue Bao; 2020 Feb 25; 36(2):189-200. PubMed ID: 32147992
    [Abstract] [Full Text] [Related]

  • 29. Efficient conversion of rebaudioside C to steviol by Paenarthrobacter ilicis CR5301.
    Li H, Sun D, Cao L, Wang B.
    Lett Appl Microbiol; 2023 Jan 23; 76(1):. PubMed ID: 36688762
    [Abstract] [Full Text] [Related]

  • 30. Efficient enzymatic production of rebaudioside A from stevioside.
    Wang Y, Chen L, Li Y, Li Y, Yan M, Chen K, Hao N, Xu L.
    Biosci Biotechnol Biochem; 2016 Jan 23; 80(1):67-73. PubMed ID: 26264414
    [Abstract] [Full Text] [Related]

  • 31. [Biological conversion of stevioside to steviol by Aspergillus aculeatus and the purification of rebaudioside A].
    Ma Y, Chen Y, Zhang W, Sun H, Xia W.
    Wei Sheng Wu Xue Bao; 2014 Jan 04; 54(1):62-8. PubMed ID: 24783855
    [Abstract] [Full Text] [Related]

  • 32. Biochemical and molecular analyses of gibberellin biosynthesis in fungi.
    Kawaide H.
    Biosci Biotechnol Biochem; 2006 Mar 04; 70(3):583-90. PubMed ID: 16556972
    [Abstract] [Full Text] [Related]

  • 33. Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains.
    Troncoso C, González X, Bömke C, Tudzynski B, Gong F, Hedden P, Rojas MC.
    Phytochemistry; 2010 Aug 04; 71(11-12):1322-31. PubMed ID: 20570295
    [Abstract] [Full Text] [Related]

  • 34. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli.
    Sun Y, Chen Z, Wang G, Lv H, Mao Y, Ma K, Wang Y.
    Metab Eng; 2022 Sep 04; 73():201-213. PubMed ID: 35934176
    [Abstract] [Full Text] [Related]

  • 35. In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions: comparison with rebaudioside A.
    Purkayastha S, Pugh G, Lynch B, Roberts A, Kwok D, Tarka SM.
    Regul Toxicol Pharmacol; 2014 Mar 04; 68(2):259-68. PubMed ID: 24361573
    [Abstract] [Full Text] [Related]

  • 36. Production of Gibberellic Acid by Solid-State Fermentation Using Wastes from Rice Processing and Brewing Industry.
    Pinheiro UV, Wancura JHC, Brondani M, da Silva CM, Mainardi MA, Gai RM, Jahn SL.
    Appl Biochem Biotechnol; 2024 Mar 04; 196(3):1493-1508. PubMed ID: 37428388
    [Abstract] [Full Text] [Related]

  • 37. Enzymatic modification of stevioside by cell-free extract of Gibberella fujikuroi.
    de Oliveira BH, Packer JF, Chimelli M, de Jesus DA.
    J Biotechnol; 2007 Aug 01; 131(1):92-6. PubMed ID: 17624458
    [Abstract] [Full Text] [Related]

  • 38. Microbial hydrolysis of steviol glycosides.
    Renwick AG, Tarka SM.
    Food Chem Toxicol; 2008 Jul 01; 46 Suppl 7():S70-4. PubMed ID: 18550247
    [Abstract] [Full Text] [Related]

  • 39. Bioconversion of steviol glycosides into steviol by Microbacterium barkeri.
    Jiang HL, Xuan Y, Zeng Q, Yu QJ, Zhang YQ, Chen YR, Luo HB, Huang H, Xu Q.
    J Asian Nat Prod Res; 2021 Nov 01; 23(11):1057-1067. PubMed ID: 33135498
    [Abstract] [Full Text] [Related]

  • 40. One-Pot Biosynthesis of l-Aspartate from Maleate via an Engineered Strain Containing a Dual-Enzyme System.
    Liu Z, Yu L, Zhou L, Zhou Z.
    Appl Environ Microbiol; 2019 Oct 01; 85(19):. PubMed ID: 31324629
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.