These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine. Zhang M, Qiao J, Zhang S, Qi L. Talanta; 2018 May 15; 182():595-599. PubMed ID: 29501198 [Abstract] [Full Text] [Related]
43. Cysteamine-capped copper nanoclusters as a highly selective turn-on fluorescent assay for the detection of aluminum ions. Boonmee C, Promarak V, Tuntulani T, Ngeontae W. Talanta; 2018 Feb 01; 178():796-804. PubMed ID: 29136897 [Abstract] [Full Text] [Related]
44. A Simple and Cost Effective Turn off Fluorescence Sensor for Biliverdin and Bilirubin Based on L-Cysteine Modulated Copper Nanoclusters. Anand SK, Mathew MR, Kumar KG. J Fluoresc; 2020 Jan 01; 30(1):63-70. PubMed ID: 31858352 [Abstract] [Full Text] [Related]
45. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. Du Q, Zhang X, Cao H, Huang Y. Mikrochim Acta; 2020 May 28; 187(6):357. PubMed ID: 32468344 [Abstract] [Full Text] [Related]
46. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters. Wu D, Qi W, Liu C, Zhang Q. Anal Bioanal Chem; 2017 Apr 28; 409(10):2539-2546. PubMed ID: 28124753 [Abstract] [Full Text] [Related]
47. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin. R S A, J S AD, John N, K A, S S S, George S. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun 15; 199():123-129. PubMed ID: 29579715 [Abstract] [Full Text] [Related]
48. Silver nanoclusters functionalized with Ce(III) ions are a viable "turn-on-off" fluorescent probe for sulfide. Liu J, Bao H, Ma DL, Leung CH. Mikrochim Acta; 2018 Dec 12; 186(1):16. PubMed ID: 30542774 [Abstract] [Full Text] [Related]
49. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters. Wang P, Li BL, Li NB, Luo HQ. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():198-202. PubMed ID: 25064503 [Abstract] [Full Text] [Related]
50. Novel Fluorometric Assay for Detection of Cysteine as a Reducing Agent and Template in Formation of Copper Nanoclusters. Borghei YS, Hosseini M, Khoobi M, Ganjali MR. J Fluoresc; 2017 Mar 25; 27(2):529-536. PubMed ID: 27858297 [Abstract] [Full Text] [Related]
51. pH-Regulated Synthesis of Trypsin-Templated Copper Nanoclusters with Blue and Yellow Fluorescent Emission. Feng J, Chen Y, Han Y, Liu J, Ma S, Zhang H, Chen X. ACS Omega; 2017 Dec 31; 2(12):9109-9117. PubMed ID: 30023601 [Abstract] [Full Text] [Related]
52. Coal humus acid functionalized high stability fluorescent copper nanoclusters for tumor identification by sequential off-on-off monitoring tryptophan and Hg2. Li L, Chen L, Song Z, Wu W, Zhao W, Wei Y, Wang B, Zhang C. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun 05; 294():122557. PubMed ID: 36893677 [Abstract] [Full Text] [Related]
53. Rapid synthesis of fluorescent bovine serum albumin-gold nanoclusters complex for glutathione determination. Wang T, Xiao D. Mikrochim Acta; 2021 May 19; 188(6):193. PubMed ID: 34009425 [Abstract] [Full Text] [Related]
54. A ratiometric luminescence probe for selective detection of Ag+ based on thiolactic acid-capped gold nanoclusters with near-infrared emission and employing bovine serum albumin as a signal amplifier. Liang QY, Wang C, Li HW, Wu Y. Mikrochim Acta; 2023 Aug 31; 190(9):374. PubMed ID: 37653352 [Abstract] [Full Text] [Related]
55. A highly selective fluorescent sensor for chlortetracycline based on histidine-templated copper nanoclusters. Wang XS, Zhang S. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov 15; 281():121588. PubMed ID: 35803106 [Abstract] [Full Text] [Related]
56. Rapid, one-pot, protein-mediated green synthesis of water-soluble fluorescent nickel nanoclusters for sensitive and selective detection of tartrazine. Wang Y, Mu Y, Hu J, Zhuang Q, Ni Y. Spectrochim Acta A Mol Biomol Spectrosc; 2019 May 05; 214():445-450. PubMed ID: 30807942 [Abstract] [Full Text] [Related]
57. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y. Biosens Bioelectron; 2017 May 15; 91():734-740. PubMed ID: 28130993 [Abstract] [Full Text] [Related]
58. A smartphone-based ratiometric fluoroprobe based on blue-red dual-emission signals of thiochrome and copper nanoclusters for sensitive assay of metam-sodium in cucumbers. Chen K, Wang G, Wang X, Wang H. Talanta; 2023 Aug 15; 261():124673. PubMed ID: 37207510 [Abstract] [Full Text] [Related]
59. One-pot synthesis of copper nanocluster/Tb-MOF composites for the ratiometric fluorescence detection of Cu2. Liu P, Hao R, Sun W, Lin Z, Jing T. Luminescence; 2022 Oct 15; 37(10):1793-1799. PubMed ID: 35946061 [Abstract] [Full Text] [Related]
60. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. Chen Z, Lu D, Cai Z, Dong C, Shuang S. Luminescence; 2014 Nov 15; 29(7):722-7. PubMed ID: 24403131 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]