These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 38148332
1. Duckweed-associated bacteria as plant growth-promotor to enhance growth of Spirodela polyrhiza in wastewater effluent from a poultry farm. Boonmak C, Kettongruang S, Buranathong B, Morikawa M, Duangmal K. Arch Microbiol; 2023 Dec 26; 206(1):43. PubMed ID: 38148332 [Abstract] [Full Text] [Related]
2. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Mol Plant Microbe Interact; 2022 Jan 26; 35(1):28-38. PubMed ID: 34622686 [Abstract] [Full Text] [Related]
3. Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters. Toyama T, Kuroda M, Ogata Y, Hachiya Y, Quach A, Tokura K, Tanaka Y, Mori K, Morikawa M, Ike M. Water Sci Technol; 2017 Sep 26; 76(5-6):1418-1428. PubMed ID: 28953468 [Abstract] [Full Text] [Related]
4. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Ishizawa H, Ogata Y, Hachiya Y, Tokura KI, Kuroda M, Inoue D, Toyama T, Tanaka Y, Mori K, Morikawa M, Ike M. Chemosphere; 2020 Jan 26; 238():124682. PubMed ID: 31524619 [Abstract] [Full Text] [Related]
5. Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site. Khairina Y, Jog R, Boonmak C, Toyama T, Oyama T, Morikawa M. Chemosphere; 2021 Apr 26; 268():129247. PubMed ID: 33383277 [Abstract] [Full Text] [Related]
7. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Toyama T, Hanaoka T, Tanaka Y, Morikawa M, Mori K. Bioresour Technol; 2018 Feb 26; 250():464-473. PubMed ID: 29197273 [Abstract] [Full Text] [Related]
8. Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture. Toyama T, Kobayashi M, Rubiy Atno, Morikawa M, Mori K. Chemosphere; 2024 Aug 26; 361():142592. PubMed ID: 38866331 [Abstract] [Full Text] [Related]
9. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production. Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Wang M, Zhao H. Plant Biol (Stuttg); 2015 Jan 26; 17 Suppl 1():82-90. PubMed ID: 24942851 [Abstract] [Full Text] [Related]
10. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK. Plant Biol (Stuttg); 2018 Mar 26; 20(2):357-364. PubMed ID: 29222918 [Abstract] [Full Text] [Related]
11. Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. Ishizawa H, Kuroda M, Inoue D, Morikawa M, Ike M. FEMS Microbiol Ecol; 2020 Jul 01; 96(7):. PubMed ID: 32445473 [Abstract] [Full Text] [Related]
12. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M. Environ Sci Pollut Res Int; 2017 Aug 01; 24(23):19104-19113. PubMed ID: 28660513 [Abstract] [Full Text] [Related]
13. Comparative Analysis of Microbial Communities in Fronds and Roots of Three Duckweed Species: Spirodela polyrhiza, Lemna minor, and Lemna aequinoctialis. Iwashita T, Tanaka Y, Tamaki H, Yoneda Y, Makino A, Tateno Y, Li Y, Toyama T, Kamagata Y, Mori K. Microbes Environ; 2020 Aug 01; 35(3):. PubMed ID: 32684532 [Abstract] [Full Text] [Related]
14. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Hoang PTN, Schubert I. Chromosoma; 2017 Dec 01; 126(6):729-739. PubMed ID: 28756515 [Abstract] [Full Text] [Related]
15. Positive effects of duckweed polycultures on starch and protein accumulation. Li Y, Zhang F, Daroch M, Tang J. Biosci Rep; 2016 Oct 01; 36(5):. PubMed ID: 27515418 [Abstract] [Full Text] [Related]
16. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Zhao Z, Shi H, Liu Y, Zhao H, Su H, Wang M, Zhao Y. Bioresour Technol; 2014 Sep 01; 167():383-9. PubMed ID: 24998479 [Abstract] [Full Text] [Related]
17. Enhancing biomass production and biochemical compositions of Spirodela polyrhiza through superhydrophobic cultivation platforms at low light intensity. Chua MX, Saravanan G, Cheah YT, Chan DJC. Plant Physiol Biochem; 2024 Mar 01; 208():108485. PubMed ID: 38461755 [Abstract] [Full Text] [Related]
19. Dynamic Alteration of Microbial Communities of Duckweeds from Nature to Nutrient-Deficient Condition. Bunyoo C, Roongsattham P, Khumwan S, Phonmakham J, Wonnapinij P, Thamchaipenet A. Plants (Basel); 2022 Oct 29; 11(21):. PubMed ID: 36365369 [Abstract] [Full Text] [Related]
20. [Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhiza in medium with nutrient character of wastewater]. Chong YX, Hu HY, Qian Y. Huan Jing Ke Xue; 2004 Nov 29; 25(6):59-64. PubMed ID: 15759882 [Abstract] [Full Text] [Related] Page: [Next] [New Search]