These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans. McCloskey RJ, Fouad AD, Churgin MA, Fang-Yen C. J Neurophysiol; 2017 May 01; 117(5):1911-1934. PubMed ID: 28228583 [Abstract] [Full Text] [Related]
3. Neuroendocrine gene expression coupling of interoceptive bacterial food cues to foraging behavior of C. elegans. Boor SA, Meisel JD, Kim DH. Elife; 2024 Jan 17; 12():. PubMed ID: 38231572 [Abstract] [Full Text] [Related]
7. Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in Caenorhabditis elegans. Churgin MA, McCloskey RJ, Peters E, Fang-Yen C. J Neurosci; 2017 Aug 16; 37(33):7811-7823. PubMed ID: 28698386 [Abstract] [Full Text] [Related]
8. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI. Cell; 2013 Aug 29; 154(5):1023-1035. PubMed ID: 23972393 [Abstract] [Full Text] [Related]
9. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Haley JA, Chalasani SH. Cell Mol Life Sci; 2024 Jun 08; 81(1):252. PubMed ID: 38849591 [Abstract] [Full Text] [Related]
10. Dietary choice behavior in Caenorhabditis elegans. Shtonda BB, Avery L. J Exp Biol; 2006 Jan 08; 209(Pt 1):89-102. PubMed ID: 16354781 [Abstract] [Full Text] [Related]
11. Neuroendocrine Gene Expression Coupling of Interoceptive Bacterial Food Cues to Foraging Behavior of C. elegans. Boor SA, Meisel JD, Kim DH. bioRxiv; 2023 Nov 13. PubMed ID: 37503081 [Abstract] [Full Text] [Related]
14. Inversion of pheromone preference optimizes foraging in C. elegans. Dal Bello M, Pérez-Escudero A, Schroeder FC, Gore J. Elife; 2021 Jul 06; 10():. PubMed ID: 34227470 [Abstract] [Full Text] [Related]
15. A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. Rivard L, Srinivasan J, Stone A, Ochoa S, Sternberg PW, Loer CM. BMC Neurosci; 2010 Feb 19; 11():22. PubMed ID: 20167133 [Abstract] [Full Text] [Related]
16. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Bendesky A, Tsunozaki M, Rockman MV, Kruglyak L, Bargmann CI. Nature; 2011 Apr 21; 472(7343):313-8. PubMed ID: 21412235 [Abstract] [Full Text] [Related]
17. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Fenk LA, de Bono M. Proc Natl Acad Sci U S A; 2015 Jul 07; 112(27):E3525-34. PubMed ID: 26100886 [Abstract] [Full Text] [Related]
18. G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans. Davis K, Mitchell C, Weissenfels O, Bai J, Raizen DM, Ailion M, Topalidou I. PLoS Genet; 2023 Jan 07; 19(1):e1010613. PubMed ID: 36652499 [Abstract] [Full Text] [Related]
19. A neural circuit for flexible control of persistent behavioral states. Ji N, Madan GK, Fabre GI, Dayan A, Baker CM, Kramer TS, Nwabudike I, Flavell SW. Elife; 2021 Nov 18; 10():. PubMed ID: 34792019 [Abstract] [Full Text] [Related]
20. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. O'Donnell MP, Chao PH, Kammenga JE, Sengupta P. PLoS Genet; 2018 Feb 18; 14(2):e1007213. PubMed ID: 29415022 [Abstract] [Full Text] [Related] Page: [Next] [New Search]