These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
109 related items for PubMed ID: 38160158
1. Prospective study on binocular imbalance as a potential indicator of myopia development using a virtual reality platform. Tao ZY, Chu H, Kang ZF, Deng HW. Asian J Surg; 2024 Mar; 47(3):1693-1695. PubMed ID: 38160158 [No Abstract] [Full Text] [Related]
2. Exploring the Relationship Between Binocular Imbalance and Myopia: Refraction with a Virtual Reality Platform. Tao Z, Deng H, Chu H, Wiederhold M, Wiederhold BK, Zhong H, Kang Z, Zhao J, Xiong M, Zhu M, Lin Z, Wang J. Cyberpsychol Behav Soc Netw; 2022 Oct; 25(10):672-677. PubMed ID: 35914075 [Abstract] [Full Text] [Related]
3. Assessment of Binocular Imbalance with an Augmented Virtual Reality Platform in a Normal Population. Xu L, Huang M, Lan J, Huang W, Wang X, Zhang G, Li X, Shasha P, Chu H, Wiederhold BK, Wiederhold M, Yan L, Yang X, Zeng J. Cyberpsychol Behav Soc Netw; 2019 Feb; 22(2):127-131. PubMed ID: 30779616 [Abstract] [Full Text] [Related]
4. Ocular effects of virtual reality headset wear in young adults. Turnbull PRK, Phillips JR. Sci Rep; 2017 Nov 23; 7(1):16172. PubMed ID: 29170432 [Abstract] [Full Text] [Related]
5. Evaluation of a Virtual Reality implementation of a binocular imbalance test. Martín S, Portela JA, Ding J, Ibarrondo O, Levi DM. PLoS One; 2020 Nov 23; 15(8):e0238047. PubMed ID: 32822405 [Abstract] [Full Text] [Related]
6. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness. Tychsen L, Foeller P. Am J Ophthalmol; 2020 Jan 23; 209():151-159. PubMed ID: 31377280 [Abstract] [Full Text] [Related]
7. [Application of the Virtual Reality-Pattern Visual Evoked Potential in Forensic Visual Acuity Evaluation]. Tang WY, Chen JM, Wang RR, Tan SL, Liu DM, Yu XY, Li HH, Zhang QF, Sheng YL, Xia WT. Fa Yi Xue Za Zhi; 2020 Dec 23; 36(6):762-766. PubMed ID: 33550723 [Abstract] [Full Text] [Related]
8. Virtual reality: A possible approach to myopia prevention and control? Zhao F, Chen L, Ma H, Zhang W. Med Hypotheses; 2018 Dec 23; 121():1-3. PubMed ID: 30396458 [Abstract] [Full Text] [Related]
9. Virtual Reality Assessment Reveals Myopic Regression After ICL Implantation in High Myopia. Lan J, Zhang Y, Cui Y, Yang C, Li X, Xie W, Li J, Wang S, Wiederhold M, Wiederhold B, Chu H, Yan L, Zeng J. Stud Health Technol Inform; 2023 Dec 11; 311():1-12. PubMed ID: 34047281 [Abstract] [Full Text] [Related]
10. Preliminary Study of Short-Term Visual Perceptual Training Based on Virtual Reality and Augmented Reality in Postoperative Strabismic Patients. Yang X, Fan Y, Chu H, Yan L, Wiederhold BK, Wiederhold M, Liao Y. Cyberpsychol Behav Soc Netw; 2022 Jul 11; 25(7):465-470. PubMed ID: 35647873 [Abstract] [Full Text] [Related]
11. Virtual reality-based vision therapy versus OBVAT in the treatment of convergence insufficiency, accommodative dysfunction: a pilot randomized controlled trial. Li S, Tang A, Yang B, Wang J, Liu L. BMC Ophthalmol; 2022 Apr 21; 22(1):182. PubMed ID: 35448970 [Abstract] [Full Text] [Related]
12. The Role of Binocular Vision in Avoiding Virtual Obstacles While Walking. Zhao J, Allison RS. IEEE Trans Vis Comput Graph; 2021 Jul 21; 27(7):3277-3288. PubMed ID: 31985426 [Abstract] [Full Text] [Related]
13. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Hirota M, Kanda H, Endo T, Miyoshi T, Miyagawa S, Hirohara Y, Yamaguchi T, Saika M, Morimoto T, Fujikado T. Ergonomics; 2019 Jun 21; 62(6):759-766. PubMed ID: 30773103 [Abstract] [Full Text] [Related]
14. The effect of gaming on accommodative and vergence facilities after exposure to virtual reality head-mounted display. Munsamy AJ, Paruk H, Gopichunder B, Luggya A, Majola T, Khulu S. J Optom; 2020 Jun 21; 13(3):163-170. PubMed ID: 32234359 [Abstract] [Full Text] [Related]
15. Therapeutic use of virtual reality relaxation in schizophrenia: A pilot study. Rault O, Lamothe H, Pelissolo A. Psychiatry Res; 2022 Mar 21; 309():114389. PubMed ID: 35042064 [Abstract] [Full Text] [Related]
16. Monocular cues are superior to binocular cues for size perception when they are in conflict in virtual reality. Yoo SA, Lee S, Joo SJ. Cortex; 2023 Sep 21; 166():80-90. PubMed ID: 37343313 [Abstract] [Full Text] [Related]
17. Virtual reality prototype for binocular therapy in older children and adults with amblyopia. Elhusseiny AM, Bishop K, Staffa SJ, Zurakowski D, Hunter DG, Mantagos IS. J AAPOS; 2021 Aug 21; 25(4):217.e1-217.e6. PubMed ID: 34246761 [Abstract] [Full Text] [Related]
18. Design and assessment of amblyopia, strabismus, and myopia treatment and vision training using virtual reality. Chan HS, Tang YM, Do CW, Ho Yin Wong H, Chan LY, To S. Digit Health; 2023 Aug 21; 9():20552076231176638. PubMed ID: 37312939 [Abstract] [Full Text] [Related]
19. Experience of using a virtual reality rehabilitation management platform for breast cancer patients: a qualitative study. Zhou Z, Li J, Wang H, Luan Z, Du S, Wu N, Chen Y, Peng X. Support Care Cancer; 2023 Apr 28; 31(5):307. PubMed ID: 37115320 [Abstract] [Full Text] [Related]
20. Condition notification assisted by virtual reality technology reduces the anxiety levels of parents of children with simple CHD: a prospective randomised controlled study. Wang LW, Liu JF, Xie WP, Chen Q, Cao H. Cardiol Young; 2022 Nov 28; 32(11):1801-1806. PubMed ID: 34991769 [Abstract] [Full Text] [Related] Page: [Next] [New Search]