These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 3816153

  • 1. Support of respiration and citrulline synthesis by isolated hepatic mitochondria from Squalus acanthias by acyl-CoAs and other nitrogen-donating substrates.
    Anderson PM.
    Comp Biochem Physiol B; 1986; 85(4):789-94. PubMed ID: 3816153
    [Abstract] [Full Text] [Related]

  • 2. Glutamine-dependent synthesis of citrulline by isolated hepatic mitochondria from Squalus acanthias.
    Anderson PM, Casey CA.
    J Biol Chem; 1984 Jan 10; 259(1):456-62. PubMed ID: 6142886
    [Abstract] [Full Text] [Related]

  • 3. Effects of urea, trimethylamine oxide, and osmolality on respiration and citrulline synthesis by isolated hepatic mitochondria from Squalus acanthias.
    Anderson PM.
    Comp Biochem Physiol B; 1986 Jan 10; 85(4):783-8. PubMed ID: 3816152
    [Abstract] [Full Text] [Related]

  • 4. Submitochondrial localization of arginase and other enzymes associated with urea synthesis and nitrogen metabolism, in liver of Squalus acanthias.
    Casey CA, Anderson PM.
    Comp Biochem Physiol B; 1985 Jan 10; 82(2):307-15. PubMed ID: 2865047
    [Abstract] [Full Text] [Related]

  • 5. Purification and properties of glutamine synthetase from liver of Squalus acanthias.
    Shankar RA, Anderson PM.
    Arch Biochem Biophys; 1985 May 15; 239(1):248-59. PubMed ID: 2860871
    [Abstract] [Full Text] [Related]

  • 6. Purification and properties of ornithine carbamoyl transferase from liver of Squalus acanthias.
    Xiong XF, Anderson PM.
    Arch Biochem Biophys; 1989 Apr 15; 270(1):198-207. PubMed ID: 2930186
    [Abstract] [Full Text] [Related]

  • 7. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding.
    Kajimura M, Walsh PJ, Mommsen TP, Wood CM.
    Physiol Biochem Zool; 2006 Apr 15; 79(3):602-13. PubMed ID: 16691526
    [Abstract] [Full Text] [Related]

  • 8. Mitochondrial citrulline synthesis from ammonia and glutamine in the liver of ureogenic air-breathing catfish, Clarias batrachus (Linnaeus).
    Kharbuli ZY, Biswas K, Saha N.
    Indian J Exp Biol; 2007 Dec 15; 45(12):1073-9. PubMed ID: 18254215
    [Abstract] [Full Text] [Related]

  • 9. Origin of the ammonia used for mitochondrial citrulline synthesis as revealed by 13C-15N spin coupling patterns observed by 13C NMR.
    Nieto R, Cruz F, Tejedor JM, Barroso G, Cerdán S.
    Biochimie; 1992 Dec 15; 74(9-10):903-11. PubMed ID: 1361361
    [Abstract] [Full Text] [Related]

  • 10. Renal ammoniagenesis and acid excretion in the dogfish, Squalus acanthias.
    King PA, Goldstein L.
    Am J Physiol; 1983 Oct 15; 245(4):R581-9. PubMed ID: 6137960
    [Abstract] [Full Text] [Related]

  • 11. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV, Ruiter J, Ijlst L, de Almeida IT, Wanders RJ.
    Mol Genet Metab; 2005 Nov 15; 86(3):344-52. PubMed ID: 16176879
    [Abstract] [Full Text] [Related]

  • 12. Effect of pent-4-enoic acid, propionic acid and other short-chain fatty acids on citrulline synthesis in rat liver mitochondria.
    Glasgow AM, Chase HP.
    Biochem J; 1976 May 15; 156(2):301-7. PubMed ID: 942411
    [Abstract] [Full Text] [Related]

  • 13. Analysis of the control of citrulline synthesis in isolated rat-liver mitochondria.
    Wanders RJ, Van Roermund CW, Meijer AJ.
    Eur J Biochem; 1984 Jul 16; 142(2):247-54. PubMed ID: 6745275
    [Abstract] [Full Text] [Related]

  • 14. Glutamine synthetase activity in subdivisions of brain of the shark, Squalus acanthias.
    Webb JT, Brown GW.
    Experientia; 1980 Aug 15; 36(8):903-4. PubMed ID: 6108231
    [Abstract] [Full Text] [Related]

  • 15. Altered enzyme activities and citrulline synthesis in liver mitochondria from ornithine carbamoyltransferase-deficient sparse-furash mice.
    Cohen NS, Cheung CW, Raijman L.
    Biochem J; 1989 Jan 01; 257(1):251-7. PubMed ID: 2920015
    [Abstract] [Full Text] [Related]

  • 16. The stimulation of the mitochondrial respiration by citrulline synthesis.
    Letko G, Markefski M, Bohnensack R.
    Acta Biol Med Ger; 1979 Jan 01; 38(8):1081-90. PubMed ID: 119392
    [Abstract] [Full Text] [Related]

  • 17. Biochemical analysis of decreased ornithine transport activity in the liver mitochondria from patients with hyperornithinemia, hyperammonemia and homocitrullinuria.
    Inoue I, Saheki T, Kayanuma K, Uono M, Nakajima M, Takeshita K, Koike R, Yuasa T, Miyatake T, Sakoda K.
    Biochim Biophys Acta; 1988 Jan 12; 964(1):90-5. PubMed ID: 3334877
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effects of organic acids on the synthesis of citrulline by intact rat liver mitochondria.
    Rabier D, Briand P, Petit F, Kamoun P, Cathelineau L.
    Biochimie; 1986 May 12; 68(5):639-47. PubMed ID: 2873843
    [Abstract] [Full Text] [Related]

  • 20. Role of the glutamate dehydrogenase reaction in furnishing aspartate nitrogen for urea synthesis: studies in perfused rat liver with 15N.
    Nissim I, Horyn O, Luhovyy B, Lazarow A, Daikhin Y, Nissim I, Yudkoff M.
    Biochem J; 2003 Nov 15; 376(Pt 1):179-88. PubMed ID: 12935293
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.