These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 38168719

  • 1. Hybrid de novo genome assembly of the sexually dimorphic Lady Amherst's pheasant.
    Garg KM, Dovih P, Chattopadhyay B.
    DNA Res; 2024 Feb 01; 31(1):. PubMed ID: 38168719
    [Abstract] [Full Text] [Related]

  • 2. The amino acid sequence of Lady Amherst's pheasant (Chrysolophus amherstiae) and golden pheasant (Chrysolophus pictus) egg-white lysozymes.
    Araki T, Kuramoto M, Torikata T.
    Agric Biol Chem; 1990 Sep 01; 54(9):2299-308. PubMed ID: 1368578
    [Abstract] [Full Text] [Related]

  • 3. Comparative genomics and transcriptomics of Chrysolophus provide insights into the evolution of complex plumage coloration.
    Gao G, Xu M, Bai C, Yang Y, Li G, Xu J, Wei Z, Min J, Su G, Zhou X, Guo J, Hao Y, Zhang G, Yang X, Xu X, Widelitz RB, Chuong CM, Zhang C, Yin J, Zuo Y.
    Gigascience; 2018 Oct 01; 7(10):. PubMed ID: 30192940
    [Abstract] [Full Text] [Related]

  • 4. Molecular genetics of avian proteins. IV. The egg-white proteins of the Golden pheasant, Chrysolophus pictus L., and Lady Amherst's pheasant, C. Amherstiae Leadbeater, and their possible evolutionary significance.
    Baker CM.
    Comp Biochem Physiol; 1965 Sep 01; 16(1):93-101. PubMed ID: 5861537
    [No Abstract] [Full Text] [Related]

  • 5. Expression levels of GSTA2 and APOD genes might be associated with carotenoid coloration in golden pheasant (Chrysolophus pictus) plumage.
    Gao GQ, Song LS, Tong B, Li GP.
    Dongwuxue Yanjiu; 2016 May 18; 37(3):144-50. PubMed ID: 27265652
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Genome Assembly of the Common Pheasant Phasianus colchicus: A Model for Speciation and Ecological Genomics.
    Liu Y, Liu S, Zhang N, Chen D, Que P, Liu N, Höglund J, Zhang Z, Wang B.
    Genome Biol Evol; 2019 Dec 01; 11(12):3326-3331. PubMed ID: 31713630
    [Abstract] [Full Text] [Related]

  • 9. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.
    Shibusawa M, Nishibori M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y.
    Cytogenet Genome Res; 2004 Dec 01; 106(1):111-9. PubMed ID: 15218250
    [Abstract] [Full Text] [Related]

  • 10. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing.
    Dhar R, Seethy A, Pethusamy K, Singh S, Rohil V, Purkayastha K, Mukherjee I, Goswami S, Singh R, Raj A, Srivastava T, Acharya S, Rajashekhar B, Karmakar S.
    Gigascience; 2019 May 01; 8(5):. PubMed ID: 31077316
    [Abstract] [Full Text] [Related]

  • 11. The draft genome of the Temminck's tragopan (Tragopan temminckii) with evolutionary implications.
    Li X, Wang X, Yu X, Yang C, Lin L, Huang Y.
    BMC Genomics; 2023 Dec 07; 24(1):751. PubMed ID: 38062370
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Chromosome level assembly reveals a unique immune gene organization and signatures of evolution in the common pheasant.
    He C, Zhao L, Xiao L, Xu K, Ding J, Zhou H, Zheng Y, Han C, Akinyemi F, Luo H, Yang L, Luo L, Yuan H, Lu X, Meng H.
    Mol Ecol Resour; 2021 Apr 07; 21(3):897-911. PubMed ID: 33188724
    [Abstract] [Full Text] [Related]

  • 14. A de novo assembled genome of the Tibetan Partridge (Perdix hodgsoniae) and its high-altitude adaptation.
    Li X, Wang X, Yang C, Lin L, Yuan H, Lei F, Huang Y.
    Integr Zool; 2023 Mar 07; 18(2):225-236. PubMed ID: 36049502
    [Abstract] [Full Text] [Related]

  • 15. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant.
    Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, Lu TP, Lai LC, Lin EC, Lee H, Ding ST, Tsai MH, Chen CY, Chuang EY.
    Gigascience; 2018 May 01; 7(5):. PubMed ID: 29722814
    [Abstract] [Full Text] [Related]

  • 16. Genomic evolution of island birds from the view of the Swinhoe's pheasant (Lophura swinhoii).
    Xu X, Wang C, Xu C, Yuan J, Wang G, Wu Y, Huang C, Jing H, Yang P, Xu L, Peng S, Shan F, Xia X, Jin F, Hou F, Wang J, Mi D, Ren Y, Liu Y, Irwin DM, Li X, Chen W, Li G.
    Mol Ecol Resour; 2024 Feb 01; 24(2):e13896. PubMed ID: 37955396
    [Abstract] [Full Text] [Related]

  • 17. Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish.
    Johnson LK, Sahasrabudhe R, Gill JA, Roach JL, Froenicke L, Brown CT, Whitehead A.
    Gigascience; 2020 Jun 01; 9(6):. PubMed ID: 32556169
    [Abstract] [Full Text] [Related]

  • 18. The amino acid sequence of copper pheasant lysozyme.
    Araki T, Kuramoto M, Torikata T.
    Biosci Biotechnol Biochem; 1994 Apr 01; 58(4):794-5. PubMed ID: 7764870
    [Abstract] [Full Text] [Related]

  • 19. Hybrid de novo whole-genome assembly and annotation of the model tapeworm Hymenolepis diminuta.
    Nowak RM, Jastrzębski JP, Kuśmirek W, Sałamatin R, Rydzanicz M, Sobczyk-Kopcioł A, Sulima-Celińska A, Paukszto Ł, Makowczenko KG, Płoski R, Tkach VV, Basałaj K, Młocicki D.
    Sci Data; 2019 Dec 03; 6(1):302. PubMed ID: 31796747
    [Abstract] [Full Text] [Related]

  • 20. De novo assembly and characterization of the draft genome of the cashew (Anacardium occidentale L.).
    Savadi S, Muralidhara BM, Godwin J, Adiga JD, Mohana GS, Eradasappa E, Shamsudheen M, Karun A.
    Sci Rep; 2022 Oct 28; 12(1):18187. PubMed ID: 36307541
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.