These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: application to the Φ, Ψ-conformational space of the α-(1-->2)-linked mannose disaccharide present in N- and O-linked glycoproteins. Säwén E, Massad T, Landersjö C, Damberg P, Widmalm G. Org Biomol Chem; 2010 Aug 21; 8(16):3684-95. PubMed ID: 20574564 [Abstract] [Full Text] [Related]
9. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Perić-Hassler L, Hansen HS, Baron R, Hünenberger PH. Carbohydr Res; 2010 Aug 16; 345(12):1781-801. PubMed ID: 20576257 [Abstract] [Full Text] [Related]
10. NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core. Watson A, Hackbusch S, Franz AH. Carbohydr Res; 2019 Feb 01; 473():18-35. PubMed ID: 30599389 [Abstract] [Full Text] [Related]
11. Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations. Säwén E, Hinterholzinger F, Landersjö C, Widmalm G. Org Biomol Chem; 2012 Jun 21; 10(23):4577-85. PubMed ID: 22572908 [Abstract] [Full Text] [Related]
13. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions. Pendrill R, Engström O, Volpato A, Zerbetto M, Polimeno A, Widmalm G. Phys Chem Chem Phys; 2016 Jan 28; 18(4):3086-96. PubMed ID: 26741055 [Abstract] [Full Text] [Related]
14. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations. Säwén E, Stevensson B, Ostervall J, Maliniak A, Widmalm G. J Phys Chem B; 2011 Jun 02; 115(21):7109-21. PubMed ID: 21545157 [Abstract] [Full Text] [Related]
15. A perspective on the primary and three-dimensional structures of carbohydrates. Widmalm G. Carbohydr Res; 2013 Aug 30; 378():123-32. PubMed ID: 23522728 [Abstract] [Full Text] [Related]
16. Oligosaccharides display both rigidity and high flexibility in water as determined by 13C NMR relaxation and 1H,1H NOE spectroscopy: evidence of anti-phi and anti-psi torsions in the same glycosidic linkage. Höög C, Landersjö C, Widmalm G. Chemistry; 2001 Jul 16; 7(14):3069-77. PubMed ID: 11495434 [Abstract] [Full Text] [Related]
17. Conformational Populations of β-(1→4) O-Glycosidic Linkages Using Redundant NMR J-Couplings and Circular Statistics. Zhang W, Turney T, Meredith R, Pan Q, Sernau L, Wang X, Hu X, Woods RJ, Carmichael I, Serianni AS. J Phys Chem B; 2017 Apr 13; 121(14):3042-3058. PubMed ID: 28296420 [Abstract] [Full Text] [Related]
18. A conformational study of alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----OMe) by NMR nuclear Overhauser effect spectroscopy (NOESY) and molecular dynamics calculations. Widmalm G, Byrd RA, Egan W. Carbohydr Res; 1992 May 22; 229(2):195-211. PubMed ID: 1394287 [Abstract] [Full Text] [Related]
19. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies. Landström J, Bergström M, Hamark C, Ohlson S, Widmalm G. Org Biomol Chem; 2012 Apr 21; 10(15):3019-32. PubMed ID: 22395160 [Abstract] [Full Text] [Related]
20. Methyl α-D-galactopyranosyl-(1→3)-β-D-galactopyranoside and methyl β-D-galactopyranosyl-(1→3)-β-D-galactopyranoside: Glycosidic linkage conformation determined from MA'AT analysis. Meredith R, Zhu Y, Yoon MK, Tetrault T, Lin J, Zhang W, McGurn M, Cook E, Popp R, Shit P, Carmichael I, Serianni AS. Magn Reson Chem; 2024 Jul 21; 62(7):544-555. PubMed ID: 38414300 [Abstract] [Full Text] [Related] Page: [Next] [New Search]