These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 38181659
1. A newly synthesized magnetic nanoparticle coated with glycidyl methacrylate monomer and 1,2,4-Triazole: Immobilization of α-Amylase from Bacillus licheniformis for more reuse, stability, and activity in the presence of H2O2. Kaptan Usul S, Binay B, Soydan AM, Aslan A. Bioorg Chem; 2024 Feb; 143():107068. PubMed ID: 38181659 [Abstract] [Full Text] [Related]
2. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. Defaei M, Taheri-Kafrani A, Miroliaei M, Yaghmaei P. Int J Biol Macromol; 2018 Jul 01; 113():354-360. PubMed ID: 29486263 [Abstract] [Full Text] [Related]
3. Immobilization of the Bacillus licheniformis α-Amylase on Azole Functionalized Nanoparticle: More Active, Stable, and Usability. Kaptan Usul S, Binay B, Soydan AM, Yüzüak O, Aslan A. Protein J; 2022 Dec 01; 41(6):671-680. PubMed ID: 36266499 [Abstract] [Full Text] [Related]
4. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Guo H, Tang Y, Yu Y, Xue L, Qian JQ. Int J Biol Macromol; 2016 Jun 01; 87():537-44. PubMed ID: 26959172 [Abstract] [Full Text] [Related]
5. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme. Akhond M, Pashangeh K, Karbalaei-Heidari HR, Absalan G. Appl Biochem Biotechnol; 2016 Nov 01; 180(5):954-968. PubMed ID: 27240662 [Abstract] [Full Text] [Related]
6. Immobilization of Trichoderma harzianum α-amylase on PPyAgNp/Fe3O4-nanocomposite: chemical and physical properties. Mohamed SA, Al-Harbi MH, Almulaiky YQ, Ibrahim IH, Salah HA, El-Badry MO, Abdel-Aty AM, Fahmy AS, El-Shishtawy RM. Artif Cells Nanomed Biotechnol; 2018 Nov 01; 46(sup2):201-206. PubMed ID: 29578361 [Abstract] [Full Text] [Related]
7. Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads. He T, Tian YL, Qi L, Zhang J, Zhang ZQ. Int J Biol Macromol; 2014 Apr 01; 65():492-9. PubMed ID: 24518056 [Abstract] [Full Text] [Related]
8. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Singh V, Rakshit K, Rathee S, Angmo S, Kaushal S, Garg P, Chung JH, Sandhir R, Sangwan RS, Singhal N. Bioresour Technol; 2016 Aug 01; 214():528-533. PubMed ID: 27176673 [Abstract] [Full Text] [Related]
9. Immobilization of alpha-amylase on poly(vinyl alcohol)-coated perfluoropolymer supports for use in enzyme reactors. Yang Y, Chase HA. Biotechnol Appl Biochem; 1998 Oct 01; 28(2):145-54. PubMed ID: 9756465 [Abstract] [Full Text] [Related]
10. Immobilization of α-amylase on GO-magnetite nanoparticles for the production of high maltose containing syrup. Desai RP, Dave D, Suthar SA, Shah S, Ruparelia N, Kikani BA. Int J Biol Macromol; 2021 Feb 01; 169():228-238. PubMed ID: 33338531 [Abstract] [Full Text] [Related]
12. Alpha-amylase immobilization on epoxy containing thiol-ene photocurable materials. Cakmakci E, Danis O, Demir S, Mulazim Y, Kahraman MV. J Microbiol Biotechnol; 2013 Feb 01; 23(2):205-10. PubMed ID: 23412063 [Abstract] [Full Text] [Related]
13. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization. Gashtasbi F, Ahmadian G, Noghabi KA. Enzyme Microb Technol; 2014 Oct 01; 64-65():17-23. PubMed ID: 25152412 [Abstract] [Full Text] [Related]
14. Comparative study of covalent and hydrophobic interactions for α-amylase immobilization on cellulose derivatives. Verma NK, Raghav N. Int J Biol Macromol; 2021 Mar 31; 174():134-143. PubMed ID: 33428958 [Abstract] [Full Text] [Related]
15. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization. Ulu A, Noma SAA, Koytepe S, Ates B. Artif Cells Nanomed Biotechnol; 2018 Mar 31; 46(sup2):1035-1045. PubMed ID: 29873527 [Abstract] [Full Text] [Related]
16. Propitious catalytic response of immobilized α-amylase from G. thermoleovorans in modified APTES-Fe3O4 NPs for industrial bio-processing. Rajashekarappa KK, Basavarajappa A, Neelagund SE, Mahadevan GD, Achur RN, Kumar P. Int J Biol Macromol; 2024 Jun 31; 269(Pt 1):132021. PubMed ID: 38697441 [Abstract] [Full Text] [Related]
17. Chloro-Modified Magnetic Fe3O4@MCM-41 Core-Shell Nanoparticles for L-Asparaginase Immobilization with Improved Catalytic Activity, Reusability, and Storage Stability. Ulu A, Noma SAA, Koytepe S, Ates B. Appl Biochem Biotechnol; 2019 Mar 31; 187(3):938-956. PubMed ID: 30101367 [Abstract] [Full Text] [Related]
18. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase. Bahri S, Homaei A, Mosaddegh E. Colloids Surf B Biointerfaces; 2022 Oct 31; 218():112754. PubMed ID: 35963144 [Abstract] [Full Text] [Related]
20. Purification and biochemical characterization of Arabian balsam α-amylase and enhancing the retention and reusability via encapsulation onto calcium alginate/Fe2O3 nanocomposite beads. Al-Harbi SA, Almulaiky YQ. Int J Biol Macromol; 2020 Oct 01; 160():944-952. PubMed ID: 32464199 [Abstract] [Full Text] [Related] Page: [Next] [New Search]