These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
126 related items for PubMed ID: 38202887
1. A Smart Crop Water Stress Index-Based IoT Solution for Precision Irrigation of Wine Grape. Fuentes-Peñailillo F, Ortega-Farías S, Acevedo-Opazo C, Rivera M, Araya-Alman M. Sensors (Basel); 2023 Dec 20; 24(1):. PubMed ID: 38202887 [Abstract] [Full Text] [Related]
2. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Poblete T, Ortega-Farías S, Ryu D. Sensors (Basel); 2018 Jan 30; 18(2):. PubMed ID: 29385722 [Abstract] [Full Text] [Related]
3. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Möller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrovsky V, Sprintsin M, Cohen S. J Exp Bot; 2007 Jan 30; 58(4):827-38. PubMed ID: 16968884 [Abstract] [Full Text] [Related]
4. Combining thermal imaging and soil water content sensors to assess tree water status in pear trees. Blanco V, Willsea N, Campbell T, Howe O, Kalcsits L. Front Plant Sci; 2023 Jan 30; 14():1197437. PubMed ID: 37346137 [Abstract] [Full Text] [Related]
5. Chlorophyll Response to Water Stress and the Potential of Using Crop Water Stress Index in Sugar Beet Farming. Yetik AK, Candoğan BN. Sugar Tech; 2023 Jan 30; 25(1):57-68. PubMed ID: 35966232 [Abstract] [Full Text] [Related]
6. Evaluation of crop water stress index of wheat by using machine learning models. Yadav A, Narakala LM, Upreti H, Das Singhal G. Environ Monit Assess; 2024 Sep 23; 196(10):970. PubMed ID: 39312101 [Abstract] [Full Text] [Related]
7. Using Aerial Thermal Imagery to Evaluate Water Status in Vitis vinifera cv. Loureiro. Araújo-Paredes C, Portela F, Mendes S, Valín MI. Sensors (Basel); 2022 Oct 21; 22(20):. PubMed ID: 36298406 [Abstract] [Full Text] [Related]
8. Linking plant and soil indices for water stress management in black gram. Khorsand A, Rezaverdinejad V, Asgarzadeh H, Majnooni-Heris A, Rahimi A, Besharat S, Sadraddini AA. Sci Rep; 2021 Jan 13; 11(1):869. PubMed ID: 33441705 [Abstract] [Full Text] [Related]
9. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Poblete T, Ortega-Farías S, Moreno MA, Bardeen M. Sensors (Basel); 2017 Oct 30; 17(11):. PubMed ID: 29084169 [Abstract] [Full Text] [Related]
10. Vineyard water status assessment using on-the-go thermal imaging and machine learning. Gutiérrez S, Diago MP, Fernández-Novales J, Tardaguila J. PLoS One; 2018 Oct 30; 13(2):e0192037. PubMed ID: 29389982 [Abstract] [Full Text] [Related]
11. Development of an Open-Source Thermal Image Processing Software for Improving Irrigation Management in Potato Crops (Solanum tuberosum L.). Cucho-Padin G, Rinza J, Ninanya J, Loayza H, Quiroz R, Ramírez DA. Sensors (Basel); 2020 Jan 14; 20(2):. PubMed ID: 31947632 [Abstract] [Full Text] [Related]
12. Performance Assessment of Thermal Infrared Cameras of Different Resolutions to Estimate Tree Water Status from Two Cherry Cultivars: An Alternative to Midday Stem Water Potential and Stomatal Conductance. Carrasco-Benavides M, Antunez-Quilobrán J, Baffico-Hernández A, Ávila-Sánchez C, Ortega-Farías S, Espinoza S, Gajardo J, Mora M, Fuentes S. Sensors (Basel); 2020 Jun 25; 20(12):. PubMed ID: 32630534 [Abstract] [Full Text] [Related]
13. Towards the automation of NIR spectroscopy to assess vineyard water status spatial-temporal variability from a ground moving vehicle. Fernández-Novales J, Barrio I, Diago MP. Sci Rep; 2023 Aug 17; 13(1):13362. PubMed ID: 37591887 [Abstract] [Full Text] [Related]
14. Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing. Paulo RL, Garcia AP, Umezu CK, Camargo AP, Soares FT, Albiero D. Sensors (Basel); 2023 Jan 24; 23(3):. PubMed ID: 36772359 [Abstract] [Full Text] [Related]
15. Improving Net Photosynthetic Rate and Rooting Depth of Grapevines Through a Novel Irrigation Strategy in a Semi-Arid Climate. Ma X, Jacoby PW, Sanguinet KA. Front Plant Sci; 2020 Jan 24; 11():575303. PubMed ID: 32973860 [Abstract] [Full Text] [Related]
16. Estimation of leaf water potential by thermal imagery and spatial analysis. Cohen Y, Alchanatis V, Meron M, Saranga Y, Tsipris J. J Exp Bot; 2005 Jul 24; 56(417):1843-52. PubMed ID: 15897226 [Abstract] [Full Text] [Related]
17. [Effects of different drip irrigation modes on root distribution of wine grape 'Cabernet Sauvignon' in desert area of Northwest China]. Mao J, Chen BH, Cao JD, Wang LJ, Wang H, Wang YX. Ying Yong Sheng Tai Xue Bao; 2013 Nov 24; 24(11):3084-90. PubMed ID: 24564135 [Abstract] [Full Text] [Related]
18. Quantifying water stress of safflower (Carthamus tinctorius L.) cultivars by crop water stress index under different irrigation regimes. Bijanzadeh E, Moosavi SM, Bahadori F. Heliyon; 2022 Mar 24; 8(3):e09010. PubMed ID: 35252613 [Abstract] [Full Text] [Related]
19. Evaluating Spatially Resolved Influence of Soil and Tree Water Status on Quality of European Plum Grown in Semi-humid Climate. Käthner J, Ben-Gal A, Gebbers R, Peeters A, Herppich WB, Zude-Sasse M. Front Plant Sci; 2017 Mar 24; 8():1053. PubMed ID: 28676810 [Abstract] [Full Text] [Related]
20. Parametrization of lower limit temperature in crop water stress index model: A case study of Quercus variabilis plantation. Ba YJ, Liu LQ, Peng Q, Zhang G, Lu S, Luo KS, Zhang JS. Ying Yong Sheng Tai Xue Bao; 2024 Jul 18; 35(7):1866-1876. PubMed ID: 39233416 [Abstract] [Full Text] [Related] Page: [Next] [New Search]