These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 38206050

  • 1. Water and Cu+ Synergy in Selective CO2 Hydrogenation to Methanol over Cu-MgO-Al2O3 Catalysts.
    Fernández-Villanueva E, Lustemberg PG, Zhao M, Soriano Rodriguez J, Concepción P, Ganduglia-Pirovano MV.
    J Am Chem Soc; 2024 Jan 24; 146(3):2024-2032. PubMed ID: 38206050
    [Abstract] [Full Text] [Related]

  • 2. CO2 Activation and Hydrogenation on Cu-ZnO/Al2O3 Nanorod Catalysts: An In Situ FTIR Study.
    Wang L, Etim UJ, Zhang C, Amirav L, Zhong Z.
    Nanomaterials (Basel); 2022 Jul 23; 12(15):. PubMed ID: 35893495
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Bifunctionality of Re Supported on TiO2 in Driving Methanol Formation in Low-Temperature CO2 Hydrogenation.
    Phongprueksathat N, Ting KW, Mine S, Jing Y, Toyoshima R, Kondoh H, Shimizu KI, Toyao T, Urakawa A.
    ACS Catal; 2023 Aug 18; 13(16):10734-10750. PubMed ID: 37614518
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts.
    Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P.
    Science; 2017 Mar 24; 355(6331):1296-1299. PubMed ID: 28336665
    [Abstract] [Full Text] [Related]

  • 10. Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO2.8 H0.2 Catalyst for CO2 Hydrogenation to Methanol.
    He Y, Li Y, Lei M, Polo-Garzon F, Perez-Aguilar J, Bare SR, Formo E, Kim H, Daemen L, Cheng Y, Hong K, Chi M, Jiang DE, Wu Z.
    Angew Chem Int Ed Engl; 2024 Jan 02; 63(1):e202313389. PubMed ID: 37906130
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Exploring carbon-based Cu-ZnO catalyst and substitutes for enhanced selective methanol production from CO2: An integrated experimental and computational study.
    Hasannia S, Kazemeini M, Tamtaji M, Daryanavard Roudsari B.
    J Environ Manage; 2024 Sep 02; 368():122187. PubMed ID: 39133966
    [Abstract] [Full Text] [Related]

  • 13. Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001).
    Yang Y, Evans J, Rodriguez JA, White MG, Liu P.
    Phys Chem Chem Phys; 2010 Sep 07; 12(33):9909-17. PubMed ID: 20567756
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Probing the Reaction Mechanism in CO2 Hydrogenation on Bimetallic Ni/Cu(100) with Near-Ambient Pressure X-Ray Photoelectron Spectroscopy.
    Ren Y, Xin C, Hao Z, Sun H, Bernasek SL, Chen W, Xu GQ.
    ACS Appl Mater Interfaces; 2020 Jan 15; 12(2):2548-2554. PubMed ID: 31850736
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Mechanism of CO2 conversion to methanol over Cu(110) and Cu(100) surfaces.
    Higham MD, Quesne MG, Catlow CRA.
    Dalton Trans; 2020 Jul 07; 49(25):8478-8497. PubMed ID: 32400826
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol.
    Wang Y, Kattel S, Gao W, Li K, Liu P, Chen JG, Wang H.
    Nat Commun; 2019 Mar 11; 10(1):1166. PubMed ID: 30858380
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.