These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
117 related items for PubMed ID: 38206056
1. Design of Photothermal "Ion Pumps" for Achieving Energy-Efficient, Augmented, and Durable Lithium Extraction from Seawater. Li HN, Zhang C, Xin JH, Liu YW, Yang HC, Zhu CY, Liu C, Xu ZK. ACS Nano; 2024 Jan 23; 18(3):2434-2445. PubMed ID: 38206056 [Abstract] [Full Text] [Related]
2. Thermally assisted efficient electrochemical lithium extraction from simulated seawater. Yu Y, Yuan Z, Yu Z, Wang C, Zhong X, Wei L, Yao Y, Sui X, Han DS, Chen Y. Water Res; 2022 Sep 01; 223():118969. PubMed ID: 35988333 [Abstract] [Full Text] [Related]
3. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine. Zhang S, Wei X, Cao X, Peng M, Wang M, Jiang L, Jin J. Nat Commun; 2024 Jan 03; 15(1):238. PubMed ID: 38172144 [Abstract] [Full Text] [Related]
4. Enhanced Lithium Extraction from Brines: Prelithiation Effect of FePO4 with Size and Morphology Control. Zhao X, Yang S, Song X, Wang Y, Zhang H, Li M, Wang Y. Adv Sci (Weinh); 2024 Nov 03; 11(41):e2405176. PubMed ID: 39287070 [Abstract] [Full Text] [Related]
5. Engineering Multi-field-coupled Synergistic Ion Transport System Based on the Heterogeneous Nanofluidic Membrane for High-Efficient Lithium Extraction. Fu L, Hu Y, Lin X, Wang Q, Yang L, Xin W, Zhou S, Qian Y, Kong XY, Jiang L, Wen L. Nanomicro Lett; 2023 May 20; 15(1):130. PubMed ID: 37209189 [Abstract] [Full Text] [Related]
6. Flexible Salt-Rejecting Photothermal Paper Based on Reduced Graphene Oxide and Hydroxyapatite Nanowires for High-Efficiency Solar Energy-Driven Vapor Generation and Stable Desalination. Xiong ZC, Zhu YJ, Qin DD, Yang RL. ACS Appl Mater Interfaces; 2020 Jul 22; 12(29):32556-32565. PubMed ID: 32648729 [Abstract] [Full Text] [Related]
7. Rapid and selective lithium recovery from desalination brine using an electrochemical system. Kim S, Joo H, Moon T, Kim SH, Yoon J. Environ Sci Process Impacts; 2019 Apr 17; 21(4):667-676. PubMed ID: 30799481 [Abstract] [Full Text] [Related]
8. Boosting Water Evaporation by Construction of Photothermal Materials with a Biomimetic Black Soil Aggregate Structure. Liu J, Wang L, Jia T, Wang Z, Xu T, An N, Zhao M, Zhang R, Zhao X, Li C. ACS Appl Mater Interfaces; 2023 Aug 09; 15(31):37609-37618. PubMed ID: 37523855 [Abstract] [Full Text] [Related]
9. Highly Efficient, Stable, and Recyclable Hydrogen Manganese Oxide/Cellulose Film for the Extraction of Lithium from Seawater. Tang L, Huang S, Wang Y, Liang D, Li Y, Li J, Wang Y, Xie Y, Wang W. ACS Appl Mater Interfaces; 2020 Feb 26; 12(8):9775-9781. PubMed ID: 32011857 [Abstract] [Full Text] [Related]
10. Solar-enhanced lithium extraction with self-sustaining water recycling from salt-lake brines. Xia Q, Deng Z, Sun S, Zhao W, Ding J, Xi B, Gao G, Wang C. Proc Natl Acad Sci U S A; 2024 Jun 04; 121(23):e2400159121. PubMed ID: 38814870 [Abstract] [Full Text] [Related]
11. Multiscale Synergetic Bandgap/Structure Engineering in Semiconductor Nanofibrous Aerogels for Enhanced Solar Evaporation. Liu H, Wu F, Liu XY, Yu J, Liu YT, Ding B. Nano Lett; 2023 Dec 27; 23(24):11907-11915. PubMed ID: 38095425 [Abstract] [Full Text] [Related]
12. Mechanism Understanding of Li-ion Separation Using A Perovskite-Based Membrane. Golmohammadi M, Habibi M, Rezvantalab S, Mehdizadeh Chellehbari Y, Maleki R, Razmjou A. Membranes (Basel); 2022 Oct 26; 12(11):. PubMed ID: 36363596 [Abstract] [Full Text] [Related]
13. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization. Rethinasabapathy M, Bhaskaran G, Hwang SK, Ryu T, Huh YS. Chemosphere; 2023 Sep 26; 336():139256. PubMed ID: 37331664 [Abstract] [Full Text] [Related]
14. Salt-Rejection Solar Absorbers Based on Porous Ionic Polymers Nanowires for Desalination. Wang F, Hu Z, Fan Y, Bai W, Wu S, Sun H, Zhu Z, Liang W, Li A. Macromol Rapid Commun; 2021 Feb 26; 42(4):e2000536. PubMed ID: 33241568 [Abstract] [Full Text] [Related]
15. Dual-Channel-Ion Conductor Membrane for Low-Energy Lithium Extraction. Ma H, Xia Y, Wang Z, Xu T, Simon GP, Wang H. Environ Sci Technol; 2023 Nov 14; 57(45):17246-17255. PubMed ID: 37918342 [Abstract] [Full Text] [Related]
16. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Yao J, Zheng Z, Yang G. Nanoscale; 2018 Feb 08; 10(6):2876-2886. PubMed ID: 29367961 [Abstract] [Full Text] [Related]
17. Recycling Graphite from Spent Lithium Batteries for Efficient Solar-Driven Interfacial Evaporation to Obtain Clean Water. Han SJ, Xu L, Liu P, Wu JL, Labiadh L, Fu ML, Yuan B. ChemSusChem; 2023 Dec 19; 16(24):e202300845. PubMed ID: 37525963 [Abstract] [Full Text] [Related]
18. Synergy of copper Selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination. Xia W, Cheng H, Zhou S, Yu N, Hu H. J Colloid Interface Sci; 2022 Nov 19; 625():289-296. PubMed ID: 35717844 [Abstract] [Full Text] [Related]
19. Lithium recovery with LiTi2O4 ion-sieves. Chen CW, Chen PA, Wei CJ, Huang HL, Jou CJ, Wei YL, Wang HP. Mar Pollut Bull; 2017 Nov 30; 124(2):1106-1110. PubMed ID: 28202273 [Abstract] [Full Text] [Related]
20. Universal Strategy to Prepare a Flexible Photothermal Absorber Based on Hierarchical Fe-MOF-74 toward Highly Efficient Solar Interfacial Seawater Desalination. Wang J, Wang W, Li J, Mu X, Yan X, Wang Z, Su J, Lei T, Wang C. ACS Appl Mater Interfaces; 2021 Sep 29; 13(38):45944-45956. PubMed ID: 34525807 [Abstract] [Full Text] [Related] Page: [Next] [New Search]