These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 38225491

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. [Effects of Microbial Fuel Cell Coupled Constructed Wetland with Different Support Matrix and Cathode Areas on the Degradation of Azo Dye and Electricity Production].
    Li XX, Cheng SC, Fang Z, Li XN.
    Huan Jing Ke Xue; 2017 May 08; 38(5):1904-1910. PubMed ID: 29965095
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes.
    Wang J, Song X, Wang Y, Bai J, Li M, Dong G, Lin F, Lv Y, Yan D.
    Sci Total Environ; 2017 Dec 31; 607-608():53-62. PubMed ID: 28686895
    [Abstract] [Full Text] [Related]

  • 28. Development of nature-based sustainable passive technologies for treating and disinfecting municipal wastewater: Experiences from constructed wetlands and slow sand filter.
    Mittal Y, Srivastava P, Pandey S, Yadav AK.
    Sci Total Environ; 2023 Nov 20; 900():165320. PubMed ID: 37414182
    [Abstract] [Full Text] [Related]

  • 29. Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis.
    Ji B, Zhao Y, Vymazal J, Mander Ü, Lust R, Tang C.
    Chemosphere; 2021 Jan 20; 262():128366. PubMed ID: 33182086
    [Abstract] [Full Text] [Related]

  • 30. Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types.
    Wang L, Xu D, Zhang Q, Liu T, Tao Z.
    Environ Sci Pollut Res Int; 2022 Jan 20; 29(1):768-778. PubMed ID: 34341922
    [Abstract] [Full Text] [Related]

  • 31. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration.
    Zhang K, Yang S, Luo H, Chen J, An X, Chen W, Zhang X.
    Chemosphere; 2022 Jul 20; 299():134376. PubMed ID: 35358555
    [Abstract] [Full Text] [Related]

  • 32. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions.
    Fang Z, Song HL, Cang N, Li XN.
    Biosens Bioelectron; 2015 Jun 15; 68():135-141. PubMed ID: 25562740
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Simultaneous removal of antibiotics and nitrogen by microbial fuel cell-constructed wetlands: Microbial response and carbon-nitrogen metabolism pathways.
    Xu W, Yang B, Wang H, Zhang L, Dong J, Liu C.
    Sci Total Environ; 2023 Oct 01; 893():164855. PubMed ID: 37331404
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells.
    Corbella C, Puigagut J, Garfí M.
    Sci Total Environ; 2017 Apr 15; 584-585():355-362. PubMed ID: 28117158
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.