These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 38229297

  • 1. The potency of mitochondria enlargement for mitochondria-mediated terpenoid production in yeast.
    Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T.
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):110. PubMed ID: 38229297
    [Abstract] [Full Text] [Related]

  • 2. Beneficial effect of optimizing the expression balance of the mevalonate pathway introduced into the mitochondria on terpenoid production in Saccharomyces cerevisiae.
    Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T.
    J Biosci Bioeng; 2024 Jan; 137(1):16-23. PubMed ID: 38042754
    [Abstract] [Full Text] [Related]

  • 3. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants.
    Henry LK, Gutensohn M, Thomas ST, Noel JP, Dudareva N.
    Proc Natl Acad Sci U S A; 2015 Aug 11; 112(32):10050-5. PubMed ID: 26216978
    [Abstract] [Full Text] [Related]

  • 4. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli.
    Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW.
    J Biotechnol; 2009 Mar 25; 140(3-4):218-26. PubMed ID: 19428716
    [Abstract] [Full Text] [Related]

  • 5. Changing biosynthesis of terpenoid percursors in rice through synthetic biology.
    Basallo O, Perez L, Lucido A, Sorribas A, Marin-Saguino A, Vilaprinyo E, Perez-Fons L, Albacete A, Martínez-Andújar C, Fraser PD, Christou P, Capell T, Alves R.
    Front Plant Sci; 2023 Mar 25; 14():1133299. PubMed ID: 37465386
    [Abstract] [Full Text] [Related]

  • 6. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production.
    Mukherjee M, Blair RH, Wang ZQ.
    Metab Eng; 2022 Nov 25; 74():139-149. PubMed ID: 36341776
    [Abstract] [Full Text] [Related]

  • 7. Plant terpenoid biosynthetic network and its multiple layers of regulation.
    Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N.
    Prog Lipid Res; 2024 Jul 25; 95():101287. PubMed ID: 38906423
    [Abstract] [Full Text] [Related]

  • 8. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway.
    Zhang Y, Cao X, Wang J, Tang F.
    Microb Cell Fact; 2022 Oct 15; 21(1):212. PubMed ID: 36243714
    [Abstract] [Full Text] [Related]

  • 9. Current development in isoprenoid precursor biosynthesis and regulation.
    Chang WC, Song H, Liu HW, Liu P.
    Curr Opin Chem Biol; 2013 Aug 15; 17(4):571-9. PubMed ID: 23891475
    [Abstract] [Full Text] [Related]

  • 10. The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis.
    Jin X, Baysal C, Gao L, Medina V, Drapal M, Ni X, Sheng Y, Shi L, Capell T, Fraser PD, Christou P, Zhu C.
    Plant Cell Rep; 2020 Jan 15; 39(1):119-133. PubMed ID: 31679061
    [Abstract] [Full Text] [Related]

  • 11. Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae.
    Chen Y, Wang Y, Liu M, Qu J, Yao M, Li B, Ding M, Liu H, Xiao W, Yuan Y.
    Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683746
    [Abstract] [Full Text] [Related]

  • 12. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism.
    Lu S, Zhou C, Guo X, Du Z, Cheng Y, Wang Z, He X.
    Microb Biotechnol; 2022 Aug 01; 15(8):2292-2306. PubMed ID: 35531990
    [Abstract] [Full Text] [Related]

  • 13. A linear pathway for mevalonate production supports growth of Thermococcus kodakarensis.
    Liman GLS, Hulko T, Febvre HP, Brachfeld AC, Santangelo TJ.
    Extremophiles; 2019 Mar 01; 23(2):229-238. PubMed ID: 30673855
    [Abstract] [Full Text] [Related]

  • 14. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.
    Kang A, George KW, Wang G, Baidoo E, Keasling JD, Lee TS.
    Metab Eng; 2016 Mar 01; 34():25-35. PubMed ID: 26708516
    [Abstract] [Full Text] [Related]

  • 15. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis.
    Volke DC, Rohwer J, Fischer R, Jennewein S.
    Microb Cell Fact; 2019 Nov 05; 18(1):192. PubMed ID: 31690314
    [Abstract] [Full Text] [Related]

  • 16. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis.
    Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X.
    Biotechnol Adv; 2023 Nov 05; 64():108124. PubMed ID: 36863457
    [Abstract] [Full Text] [Related]

  • 17. Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production.
    Yang L, Wang C, Zhou J, Kim SW.
    Microb Cell Fact; 2016 Jan 19; 15():14. PubMed ID: 26785630
    [Abstract] [Full Text] [Related]

  • 18. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction.
    Zhu ZT, Du MM, Gao B, Tao XY, Zhao M, Ren YH, Wang FQ, Wei DZ.
    Metab Eng; 2021 Nov 19; 68():232-245. PubMed ID: 34710614
    [Abstract] [Full Text] [Related]

  • 19. Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production.
    Chaves JE, Romero PR, Kirst H, Melis A.
    Photosynth Res; 2016 Dec 19; 130(1-3):517-527. PubMed ID: 27412351
    [Abstract] [Full Text] [Related]

  • 20. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories.
    Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O.
    Microb Cell Fact; 2013 Sep 23; 12():84. PubMed ID: 24059635
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.