These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 38266942

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Boosting ionizable lipid nanoparticle-mediated in vivo mRNA delivery through optimization of lipid amine-head groups.
    Ding F, Zhang H, Cui J, Li Q, Yang C.
    Biomater Sci; 2021 Nov 09; 9(22):7534-7546. PubMed ID: 34647548
    [Abstract] [Full Text] [Related]

  • 3. Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
    Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, Xu Q, Wang M.
    Adv Mater; 2019 Aug 09; 31(33):e1902575. PubMed ID: 31215123
    [Abstract] [Full Text] [Related]

  • 4. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA.
    Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ.
    Angew Chem Int Ed Engl; 2017 Jan 19; 56(4):1059-1063. PubMed ID: 27981708
    [Abstract] [Full Text] [Related]

  • 5. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.
    Walther J, Porenta D, Wilbie D, Seinen C, Benne N, Yang Q, de Jong OG, Lei Z, Mastrobattista E.
    Eur J Pharm Biopharm; 2024 Mar 19; 196():114207. PubMed ID: 38325664
    [Abstract] [Full Text] [Related]

  • 6. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M, Kelley ML, Smith AVB.
    PLoS One; 2017 Mar 19; 12(11):e0188593. PubMed ID: 29176845
    [Abstract] [Full Text] [Related]

  • 7. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
    Steyer B, Carlson-Stevermer J, Angenent-Mari N, Khalil A, Harkness T, Saha K.
    Acta Biomater; 2016 Apr 01; 34():143-158. PubMed ID: 26747759
    [Abstract] [Full Text] [Related]

  • 8. Intracellular Delivery of mRNA for Cell-Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles.
    Ma T, Chen X, Wang M.
    Chembiochem; 2023 May 02; 24(9):e202200801. PubMed ID: 36780174
    [Abstract] [Full Text] [Related]

  • 9. Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid.
    Tang Q, Liu J, Jiang Y, Zhang M, Mao L, Wang M.
    ACS Appl Mater Interfaces; 2019 Dec 18; 11(50):46585-46590. PubMed ID: 31763806
    [Abstract] [Full Text] [Related]

  • 10. A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing.
    Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J, Shah RR, Shah A, Ling D, Growe J, Pink M, Rohde E, Wood KM, Salomon WE, Harrington WF, Dombrowski C, Strapps WR, Chang Y, Morrissey DV.
    Cell Rep; 2018 Feb 27; 22(9):2227-2235. PubMed ID: 29490262
    [Abstract] [Full Text] [Related]

  • 11. Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9.
    Hosseini ES, Nikkhah M, Hosseinkhani S.
    Int J Nanomedicine; 2019 Feb 27; 14():4353-4366. PubMed ID: 31354265
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain.
    Abbasi S, Uchida S, Toh K, Tockary TA, Dirisala A, Hayashi K, Fukushima S, Kataoka K.
    J Control Release; 2021 Apr 10; 332():260-268. PubMed ID: 33647431
    [Abstract] [Full Text] [Related]

  • 15. Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components.
    Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD.
    Mol Pharm; 2022 Jun 06; 19(6):1669-1686. PubMed ID: 35594500
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing.
    Sun D, Sun Z, Jiang H, Vaidya AM, Xin R, Ayat NR, Schilb AL, Qiao PL, Han Z, Naderi A, Lu ZR.
    Bioconjug Chem; 2019 Mar 20; 30(3):667-678. PubMed ID: 30582790
    [Abstract] [Full Text] [Related]

  • 18. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy.
    Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, Lieberman J, Peer D.
    Sci Adv; 2020 Nov 20; 6(47):. PubMed ID: 33208369
    [Abstract] [Full Text] [Related]

  • 19. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
    Zhang S, Shen J, Li D, Cheng Y.
    Theranostics; 2021 Nov 20; 11(2):614-648. PubMed ID: 33391496
    [Abstract] [Full Text] [Related]

  • 20. Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy.
    Aziz A, Rehman U, Sheikh A, Abourehab MAS, Kesharwani P.
    J Biomater Sci Polym Ed; 2023 Feb 20; 34(3):398-418. PubMed ID: 36083788
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.