These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 38273495

  • 1. Size matters: Aerobic methane oxidation in sediments of shallow thermokarst lakes.
    Manasypov R, Fan L, Lim AG, Krickov IV, Pokrovsky OS, Kuzyakov Y, Dorodnikov M.
    Glob Chang Biol; 2024 Jan; 30(1):e17120. PubMed ID: 38273495
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch.
    Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S.
    Nature; 2014 Jul 24; 511(7510):452-6. PubMed ID: 25043014
    [Abstract] [Full Text] [Related]

  • 4. Large alpine deep lake as a source of greenhouse gases: A case study on Lake Fuxian in Southwestern China.
    Miao Y, Meng H, Luo W, Li B, Luo H, Deng Q, Yao Y, Shi Y, Wu QL.
    Sci Total Environ; 2022 Sep 10; 838(Pt 2):156059. PubMed ID: 35598672
    [Abstract] [Full Text] [Related]

  • 5. High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau.
    Mu C, Mu M, Wu X, Jia L, Fan C, Peng X, Ping CL, Wu Q, Xiao C, Liu J.
    Glob Chang Biol; 2023 May 10; 29(10):2732-2745. PubMed ID: 36854541
    [Abstract] [Full Text] [Related]

  • 6. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake.
    Bartosiewicz M, Maranger R, Przytulska A, Laurion I.
    Water Res; 2021 May 15; 196():116985. PubMed ID: 33735621
    [Abstract] [Full Text] [Related]

  • 7. Microbial methane cycling in sediments of Arctic thermokarst lagoons.
    Yang S, Anthony SE, Jenrich M, In 't Zandt MH, Strauss J, Overduin PP, Grosse G, Angelopoulos M, Biskaborn BK, Grigoriev MN, Wagner D, Knoblauch C, Jaeschke A, Rethemeyer J, Kallmeyer J, Liebner S.
    Glob Chang Biol; 2023 May 15; 29(10):2714-2731. PubMed ID: 36811358
    [Abstract] [Full Text] [Related]

  • 8. Eutrophication decreased CO2 but increased CH4 emissions from lake: A case study of a shallow Lake Ulansuhai.
    Sun H, Lu X, Yu R, Yang J, Liu X, Cao Z, Zhang Z, Li M, Geng Y.
    Water Res; 2021 Aug 01; 201():117363. PubMed ID: 34174729
    [Abstract] [Full Text] [Related]

  • 9. Fluxes in CO2 and CH4 and influencing factors at the sediment-water interface in a eutrophic saline lake.
    Li X, Yu R, Wang J, Sun H, Lu C, Liu X, Ren X, Zhuang S, Guo Z, Lu X.
    J Environ Manage; 2023 Oct 15; 344():118314. PubMed ID: 37343475
    [Abstract] [Full Text] [Related]

  • 10. Greenhouse gas budgets of severely polluted urban lakes in India.
    Pickard A, White S, Bhattacharyya S, Carvalho L, Dobel A, Drewer J, Jamwal P, Helfter C.
    Sci Total Environ; 2021 Dec 01; 798():149019. PubMed ID: 34325140
    [Abstract] [Full Text] [Related]

  • 11. Methane production controls in a young thermokarst lake formed by abrupt permafrost thaw.
    Pellerin A, Lotem N, Walter Anthony K, Eliani Russak E, Hasson N, Røy H, Chanton JP, Sivan O.
    Glob Chang Biol; 2022 May 01; 28(10):3206-3221. PubMed ID: 35243729
    [Abstract] [Full Text] [Related]

  • 12. Drivers of spatial and seasonal variations of CO2 and CH4 fluxes at the sediment water interface in a shallow eutrophic lake.
    Sun H, Yu R, Liu X, Cao Z, Li X, Zhang Z, Wang J, Zhuang S, Ge Z, Zhang L, Sun L, Lorke A, Yang J, Lu C, Lu X.
    Water Res; 2022 Aug 15; 222():118916. PubMed ID: 35921715
    [Abstract] [Full Text] [Related]

  • 13. Effects of turbulence on carbon emission in shallow lakes.
    Zhu L, Qin B, Zhou J, Van Dam B, Shi W.
    J Environ Sci (China); 2018 Jul 15; 69():166-172. PubMed ID: 29941252
    [Abstract] [Full Text] [Related]

  • 14. Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska.
    Matheus Carnevali PB, Rohrssen M, Williams MR, Michaud AB, Adams H, Berisford D, Love GD, Priscu JC, Rassuchine O, Hand KP, Murray AE.
    Geobiology; 2015 Mar 15; 13(2):181-97. PubMed ID: 25612141
    [Abstract] [Full Text] [Related]

  • 15. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw.
    Voigt C, Marushchak ME, Mastepanov M, Lamprecht RE, Christensen TR, Dorodnikov M, Jackowicz-Korczyński M, Lindgren A, Lohila A, Nykänen H, Oinonen M, Oksanen T, Palonen V, Treat CC, Martikainen PJ, Biasi C.
    Glob Chang Biol; 2019 May 15; 25(5):1746-1764. PubMed ID: 30681758
    [Abstract] [Full Text] [Related]

  • 16. Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay.
    Zhang L, He K, Wang T, Liu C, An Y, Zhong J.
    Environ Pollut; 2022 Nov 01; 312():120061. PubMed ID: 36041568
    [Abstract] [Full Text] [Related]

  • 17. Cyanobacteria decay alters CH4 and CO2 produced hotspots along vertical sediment profiles in eutrophic lakes.
    Zhou C, Peng Y, Zhou M, Jia R, Liu H, Xu X, Chen L, Ma J, Kinouchi T, Wang G.
    Water Res; 2024 Nov 01; 265():122319. PubMed ID: 39182350
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Response of dissolved carbon dioxide and methane concentration to warming in shallow lakes.
    Yuan D, Li S, Xu YJ, Ma S, Zhang K, Le J, Wang Y, Ma B, Jiang P, Zhang L, Xu J.
    Water Res; 2024 Mar 01; 251():121116. PubMed ID: 38219687
    [Abstract] [Full Text] [Related]

  • 20. Summer greenhouse gas fluxes in different types of hemiboreal lakes.
    Rõõm EI, Lauringson V, Laas A, Kangro K, Viik M, Meinson P, Cremona F, Nõges P, Nõges T.
    Sci Total Environ; 2022 Oct 15; 843():156732. PubMed ID: 35716743
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.