These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients. Kwon K, Kim D, Kim B, Park H. Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219 [Abstract] [Full Text] [Related]
3. MC2 -Net: motion correction network for multi-contrast brain MRI. Lee J, Kim B, Park H. Magn Reson Med; 2021 Aug; 86(2):1077-1092. PubMed ID: 33720462 [Abstract] [Full Text] [Related]
6. Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI. Al-Masni MA, Lee S, Yi J, Kim S, Gho SM, Choi YH, Kim DH. Neuroimage; 2022 Oct 01; 259():119411. PubMed ID: 35753594 [Abstract] [Full Text] [Related]
7. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging. Fantini I, Yasuda C, Bento M, Rittner L, Cendes F, Lotufo R. Comput Med Imaging Graph; 2021 Jun 01; 90():101897. PubMed ID: 33770561 [Abstract] [Full Text] [Related]
9. Deep-learning-based motion correction using multichannel MRI data: a study using simulated artifacts in the fastMRI dataset. Hewlett M, Petrov I, Johnson PM, Drangova M. NMR Biomed; 2024 Oct 01; 37(10):e5179. PubMed ID: 38808752 [Abstract] [Full Text] [Related]
15. A knowledge interaction learning for multi-echo MRI motion artifact correction towards better enhancement of SWI. Al-Masni MA, Lee S, Al-Shamiri AK, Gho SM, Choi YH, Kim DH. Comput Biol Med; 2023 Feb 01; 153():106553. PubMed ID: 36641933 [Abstract] [Full Text] [Related]
16. Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Duffy BA, Zhao L, Sepehrband F, Min J, Wang DJ, Shi Y, Toga AW, Kim H, Alzheimer's Disease Neuroimaging InitiativeLaboratory of Neuro Imaging (LONI), Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.. Neuroimage; 2021 Apr 15; 230():117756. PubMed ID: 33460797 [Abstract] [Full Text] [Related]
17. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J, Gong K, Han P, Liu H, Li Q. Med Phys; 2022 Apr 15; 49(4):2373-2385. PubMed ID: 35048390 [Abstract] [Full Text] [Related]
18. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network. Kromrey ML, Tamada D, Johno H, Funayama S, Nagata N, Ichikawa S, Kühn JP, Onishi H, Motosugi U. Eur Radiol; 2020 Nov 15; 30(11):5923-5932. PubMed ID: 32556463 [Abstract] [Full Text] [Related]
19. Learning-based motion artifact removal networks for quantitative R2∗ mapping. Xu X, Kothapalli SVVN, Liu J, Kahali S, Gan W, Yablonskiy DA, Kamilov US. Magn Reson Med; 2022 Jul 15; 88(1):106-119. PubMed ID: 35257400 [Abstract] [Full Text] [Related]