These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 38289554

  • 1. Critical evaluation of electroactive wetlands: traditional and modern advances.
    Verma P, Ray S.
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14349-14366. PubMed ID: 38289554
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges.
    Gupta S, Srivastava P, Patil SA, Yadav AK.
    Bioresour Technol; 2021 Jan; 320(Pt B):124376. PubMed ID: 33242686
    [Abstract] [Full Text] [Related]

  • 4. Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands.
    Srivastava P, Abbassi R, Yadav AK, Garaniya V, Lewis T, Zhao Y, Aminabhavi T.
    J Hazard Mater; 2021 Oct 05; 419():126417. PubMed ID: 34174621
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells.
    Corbella C, Puigagut J, Garfí M.
    Sci Total Environ; 2017 Apr 15; 584-585():355-362. PubMed ID: 28117158
    [Abstract] [Full Text] [Related]

  • 9. Key issues to consider toward an efficient constructed wetland-microbial fuel cell: the idea and the reality.
    Li D, Zhao Y, Wei D, Tang C, Wei T.
    Environ Sci Pollut Res Int; 2024 Feb 15; 31(8):11559-11575. PubMed ID: 38225491
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Assessing the factors influencing the performance of constructed wetland-microbial fuel cell integration.
    Jingyu H, Miwornunyuie N, Ewusi-Mensah D, Koomson DA.
    Water Sci Technol; 2020 Feb 15; 81(4):631-643. PubMed ID: 32460268
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Constructed wetland integrated microbial fuel cell system: looking back, moving forward.
    Wang Y, Zhao Y, Xu L, Wang W, Doherty L, Tang C, Ren B, Zhao J.
    Water Sci Technol; 2017 Jul 15; 76(2):471-477. PubMed ID: 28726712
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Advancement in constructed wetland microbial fuel cell process for wastewater treatment and electricity generation: a review.
    Bhaduri S, Behera M.
    Environ Sci Pollut Res Int; 2024 Aug 15; 31(38):50056-50075. PubMed ID: 39102132
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland.
    Tao M, Guan L, Jing Z, Tao Z, Wang Y, Luo H, Wang Y.
    Sci Total Environ; 2020 Mar 20; 709():136159. PubMed ID: 31887514
    [Abstract] [Full Text] [Related]

  • 20. Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation.
    Ren B, Wang T, Zhao Y.
    Chemosphere; 2021 Apr 20; 268():128803. PubMed ID: 33143898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.