These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 38299804
1. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges. Liu X, Li X, Chu X, Zhang B, Zhang J, Hambsch M, Mannsfeld SCB, Borrelli M, Löffler M, Pohl D, Liu Y, Zhang Z, Feng X. Adv Mater; 2024 May; 36(18):e2310791. PubMed ID: 38299804 [Abstract] [Full Text] [Related]
3. Highly Anion-Conductive Viologen-Based Two-Dimensional Polymer Membranes as Nanopower Generators. Liu X, Wang Z, Zhang Q, Lei D, Li X, Zhang Z, Feng X. Angew Chem Int Ed Engl; 2024 Oct 01; 63(40):e202409349. PubMed ID: 38962957 [Abstract] [Full Text] [Related]
4. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T, Li X, Lei W, Lu B, Liu Z, Zhai J. J Colloid Interface Sci; 2024 Nov 01; 673():365-372. PubMed ID: 38878371 [Abstract] [Full Text] [Related]
5. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Cao L, Chen IC, Chen C, Shinde DB, Liu X, Li Z, Zhou Z, Zhang Y, Han Y, Lai Z. J Am Chem Soc; 2022 Jul 13; 144(27):12400-12409. PubMed ID: 35762206 [Abstract] [Full Text] [Related]
6. Oppositely Charged Ti3 C2 Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting. Ding L, Xiao D, Lu Z, Deng J, Wei Y, Caro J, Wang H. Angew Chem Int Ed Engl; 2020 May 25; 59(22):8720-8726. PubMed ID: 31950586 [Abstract] [Full Text] [Related]
7. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P, Du X, Chen R, Zhou J, Agostini M, Sun J, Xiao L. Molecules; 2021 Sep 02; 26(17):. PubMed ID: 34500776 [Abstract] [Full Text] [Related]
8. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC, Chen HH, Chu CW, Yeh LH. Nano Lett; 2024 Sep 18; 24(37):11756-11762. PubMed ID: 39236070 [Abstract] [Full Text] [Related]
9. Superhigh and Robust Ion Selectivity in Membranes Assembled with Monolayer Clay Nanosheets. Yu X, Qian X, Wei Q, Zhang Q, Cheng HM, Ren W. Small; 2023 Aug 18; 19(35):e2300338. PubMed ID: 37186166 [Abstract] [Full Text] [Related]
13. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH2 Metal-Organic Framework Based Composite Membrane. Yao L, Li Q, Pan S, Cheng J, Liu X. Front Bioeng Biotechnol; 2022 Aug 18; 10():901507. PubMed ID: 35528210 [Abstract] [Full Text] [Related]
14. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion. Fu W, Zhang J, Zhang Q, Ahmad M, Sun Z, Li Z, Zhu Y, Zhou Y, Wang S. Int J Biol Macromol; 2024 Feb 18; 257(Pt 1):128546. PubMed ID: 38061510 [Abstract] [Full Text] [Related]
15. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S, Sun Z, Ahmad M, Fu W, Gao Z. Int J Biol Macromol; 2023 Dec 31; 253(Pt 1):126608. PubMed ID: 37652325 [Abstract] [Full Text] [Related]
17. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. Zhao Y, Wang J, Kong XY, Xin W, Zhou T, Qian Y, Yang L, Pang J, Jiang L, Wen L. Natl Sci Rev; 2020 Aug 31; 7(8):1349-1359. PubMed ID: 34692163 [Abstract] [Full Text] [Related]
18. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion. Ding L, Xiao D, Zhao Z, Wei Y, Xue J, Wang H. Adv Sci (Weinh); 2022 Sep 31; 9(25):e2202869. PubMed ID: 35780505 [Abstract] [Full Text] [Related]