These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 38306856

  • 1. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge.
    Zhang T, Han J, Dong L, Liu D, Jiao F, Qin W, Liu W.
    J Environ Manage; 2024 Feb 27; 353():120148. PubMed ID: 38306856
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis.
    Zhang T, Han J, Liu W, Jiao F, Jia W, Qin W.
    J Environ Manage; 2023 Apr 01; 331():117256. PubMed ID: 36642046
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Reclamation of an arsenic-bearing gypsum via acid washing and CaO-As stabilization involving svabite formation in thermal treatment.
    Yang D, Sasaki A, Endo M.
    J Environ Manage; 2019 Feb 01; 231():811-818. PubMed ID: 30419436
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y, Li L, Huang M, Liu Y, Xu J, Xu Z, Lei Y.
    Sci Total Environ; 2022 Sep 10; 838(Pt 3):156453. PubMed ID: 35660588
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution.
    Ma X, Yao S, Yuan Z, Bi R, Wu X, Zhang J, Wang S, Wang X, Jia Y.
    Chemosphere; 2020 Jul 10; 250():126290. PubMed ID: 32120149
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.
    de Beer M, Maree JP, Liebenberg L, Doucet FJ.
    Waste Manag; 2014 Nov 10; 34(11):2373-81. PubMed ID: 25128917
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Co-treatment of copper electrolytic sludges and copper scraps for the recycled utilization of copper and arsenic.
    Xu J, Li L, Xu Z, Xiao Y, Lei Y, Liu Y.
    Chemosphere; 2023 Nov 10; 341():140065. PubMed ID: 37673184
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution.
    Jia C, Wu L, Chen Q, Lin J, Yang L, Song Z, Guan B.
    Chemosphere; 2020 Sep 10; 255():126936. PubMed ID: 32417511
    [Abstract] [Full Text] [Related]

  • 19. Rapid-extraction oxidation process to recover and reuse copper chromium and arsenic from industrial wood preservative sludge.
    Kazi FK, Cooper PA.
    Waste Manag; 2002 Sep 10; 22(3):293-301. PubMed ID: 11952176
    [Abstract] [Full Text] [Related]

  • 20. Cleaning of lead smelting flue gas scrubber sludge and recovery of lead, selenium and mercury by the hydrometallurgical route.
    Xing P, Ma B, Wang C, Chen Y.
    Environ Technol; 2018 Jun 10; 39(11):1461-1469. PubMed ID: 28513298
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.