These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Plant Cell Rep; 2022 Mar; 41(3):775-798. PubMed ID: 34401950 [Abstract] [Full Text] [Related]
6. Integrated ATAC-Seq and RNA-Seq Data Analysis to Reveal OsbZIP14 Function in Rice in Response to Heat Stress. Qiu F, Zheng Y, Lin Y, Woldegiorgis ST, Xu S, Feng C, Huang G, Shen H, Xu Y, Kabore MAF, Ai Y, Liu W, He H. Int J Mol Sci; 2023 Mar 15; 24(6):. PubMed ID: 36982696 [Abstract] [Full Text] [Related]
11. Molecular insights into sensing, regulation and improving of heat tolerance in plants. Saini N, Nikalje GC, Zargar SM, Suprasanna P. Plant Cell Rep; 2022 Mar 15; 41(3):799-813. PubMed ID: 34676458 [Abstract] [Full Text] [Related]
12. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Lee JH, Schöffl F. Mol Gen Genet; 1996 Aug 27; 252(1-2):11-9. PubMed ID: 8804399 [Abstract] [Full Text] [Related]
13. [Heat Shock Proteins in Plant Protection from Oxidative Stress]. Yurina NP. Mol Biol (Mosk); 2023 Aug 27; 57(6):949-964. PubMed ID: 38062952 [Abstract] [Full Text] [Related]
14. Molecular communications between plant heat shock responses and disease resistance. Lee JH, Yun HS, Kwon C. Mol Cells; 2012 Aug 27; 34(2):109-16. PubMed ID: 22710621 [Abstract] [Full Text] [Related]
15. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.). Park HJ, Jung WY, Lee SS, Song JH, Kwon SY, Kim H, Kim C, Ahn JC, Cho HS. Int J Mol Sci; 2013 Jun 04; 14(6):11871-94. PubMed ID: 23736694 [Abstract] [Full Text] [Related]
16. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. Chauhan H, Khurana N, Agarwal P, Khurana JP, Khurana P. PLoS One; 2013 Jun 04; 8(11):e79577. PubMed ID: 24265778 [Abstract] [Full Text] [Related]
17. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S. Plant Cell Physiol; 2011 May 04; 52(5):933-45. PubMed ID: 21471117 [Abstract] [Full Text] [Related]
19. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Ikeda M, Mitsuda N, Ohme-Takagi M. Plant Physiol; 2011 Nov 04; 157(3):1243-54. PubMed ID: 21908690 [Abstract] [Full Text] [Related]
20. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants. Zeng C, Jia T, Gu T, Su J, Hu X. Genes (Basel); 2021 Aug 28; 12(9):. PubMed ID: 34573325 [Abstract] [Full Text] [Related] Page: [Next] [New Search]