These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 3831222

  • 1. Cytoplasmic localization and chordamesoderm induction in the frog embryo.
    Gimlich RL.
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():89-111. PubMed ID: 3831222
    [Abstract] [Full Text] [Related]

  • 2. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL.
    Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967
    [Abstract] [Full Text] [Related]

  • 3. Pattern formation in 8-cell composite embryos of Xenopus laevis.
    Kageura H, Yamana K.
    J Embryol Exp Morphol; 1986 Feb; 91():79-100. PubMed ID: 3711793
    [Abstract] [Full Text] [Related]

  • 4. Three regions of the 32-cell embryo of Xenopus laevis essential for formation of a complete tadpole.
    Kageura H.
    Dev Biol; 1995 Aug; 170(2):376-86. PubMed ID: 7649370
    [Abstract] [Full Text] [Related]

  • 5. The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development.
    Pierce KE, Brothers AJ.
    J Exp Zool; 1992 Apr 15; 262(1):40-50. PubMed ID: 1583451
    [Abstract] [Full Text] [Related]

  • 6. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H.
    Int J Dev Biol; 1994 Mar 15; 38(1):69-76. PubMed ID: 8074997
    [Abstract] [Full Text] [Related]

  • 7. Early cellular interactions promote embryonic axis formation in Xenopus laevis.
    Gimlich RL, Gerhart JC.
    Dev Biol; 1984 Jul 15; 104(1):117-30. PubMed ID: 6203792
    [Abstract] [Full Text] [Related]

  • 8. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE, Denegre JM, Danilchik MV.
    Dev Biol; 1993 Nov 15; 160(1):148-56. PubMed ID: 8224531
    [Abstract] [Full Text] [Related]

  • 9. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L, Smith JC, Slack JM.
    J Embryol Exp Morphol; 1985 Oct 15; 89():289-312. PubMed ID: 3912458
    [Abstract] [Full Text] [Related]

  • 10. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M, Kobayakawa Y, Yamana K.
    Development; 1993 May 15; 118(1):163-70. PubMed ID: 19140289
    [Abstract] [Full Text] [Related]

  • 11. Mesodermal and axial determinants contribute to mesoderm regionalization in Bufo arenarum embryos.
    Manes ME, Campos Casal FH.
    Dev Genes Evol; 2002 Sep 15; 212(8):374-9. PubMed ID: 12203093
    [Abstract] [Full Text] [Related]

  • 12. The effect of egg rotation on the differentiation of primordial germ cells in Xenopus laevis.
    Cleine JH, Dixon KE.
    J Embryol Exp Morphol; 1985 Dec 15; 90():79-99. PubMed ID: 3834040
    [Abstract] [Full Text] [Related]

  • 13. Dynamics of the control of body pattern in the development of Xenopus laevis. II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage.
    Cooke J, Webber JA.
    J Embryol Exp Morphol; 1985 Aug 15; 88():113-33. PubMed ID: 4078526
    [Abstract] [Full Text] [Related]

  • 14. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
    Cooke J, Webber JA.
    J Embryol Exp Morphol; 1985 Aug 15; 88():85-112. PubMed ID: 4078542
    [Abstract] [Full Text] [Related]

  • 15. Endoderm specification and differentiation in Xenopus embryos.
    Horb ME, Slack JM.
    Dev Biol; 2001 Aug 15; 236(2):330-43. PubMed ID: 11476575
    [Abstract] [Full Text] [Related]

  • 16. Ultraviolet irradiation of eggs and blastomere isolation experiments suggest that gastrulation in the direct developing ascidian, Molgula pacifica, requires localized cytoplasmic determinants in the egg and cell signaling beginning at the two-cell stage.
    Bates WR.
    Evol Dev; 2004 Aug 15; 6(3):180-6. PubMed ID: 15099305
    [Abstract] [Full Text] [Related]

  • 17. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N, Wakahara M.
    Int J Dev Biol; 1994 Sep 15; 38(3):447-53. PubMed ID: 7848828
    [Abstract] [Full Text] [Related]

  • 18. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC, Slack JM.
    J Embryol Exp Morphol; 1983 Dec 15; 78():299-317. PubMed ID: 6663230
    [Abstract] [Full Text] [Related]

  • 19. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish.
    Ober EA, Schulte-Merker S.
    Dev Biol; 1999 Nov 15; 215(2):167-81. PubMed ID: 10545228
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.