These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 38324569
1. Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy. Jacobson DR, Perkins TT. Proc Natl Acad Sci U S A; 2024 Feb 13; 121(7):e2313818121. PubMed ID: 38324569 [Abstract] [Full Text] [Related]
2. Protein conformational changes in the bacteriorhodopsin photocycle. Subramaniam S, Lindahl M, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R. J Mol Biol; 1999 Mar 19; 287(1):145-61. PubMed ID: 10074413 [Abstract] [Full Text] [Related]
3. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy. Jacobson DR, Perkins TT. Proc Natl Acad Sci U S A; 2021 Mar 30; 118(13):. PubMed ID: 33753487 [Abstract] [Full Text] [Related]
4. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. Tittor J, Paula S, Subramaniam S, Heberle J, Henderson R, Oesterhelt D. J Mol Biol; 2002 May 31; 319(2):555-65. PubMed ID: 12051928 [Abstract] [Full Text] [Related]
5. Voltage dependence of proton pumping by bacteriorhodopsin mutants with altered lifetime of the M intermediate. Geibel S, Lörinczi É, Bamberg E, Friedrich T. PLoS One; 2013 May 31; 8(9):e73338. PubMed ID: 24019918 [Abstract] [Full Text] [Related]
6. Quantifying the Initial Unfolding of Bacteriorhodopsin Reveals Retinal Stabilization. Yu H, Heenan PR, Edwards DT, Uyetake L, Perkins TT. Angew Chem Int Ed Engl; 2019 Feb 04; 58(6):1710-1713. PubMed ID: 30556941 [Abstract] [Full Text] [Related]
7. Dynamics of primary events in the photocycle of excited bacteriorhodopsin. Lu JJ, Ming M, Yang Y, Wu J, Li B, Ding JD, Li QG, Qian SX. Acta Biochim Biophys Sin (Shanghai); 2004 Nov 04; 36(11):724-8. PubMed ID: 15514845 [Abstract] [Full Text] [Related]
8. Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp. Jacobson DR, Uyetake L, Perkins TT. Biophys J; 2020 Feb 04; 118(3):667-675. PubMed ID: 31882249 [Abstract] [Full Text] [Related]
9. Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses. Hirai T, Subramaniam S. PLoS One; 2009 Jun 02; 4(6):e5769. PubMed ID: 19488399 [Abstract] [Full Text] [Related]
10. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches. Giliberti V, Polito R, Ritter E, Broser M, Hegemann P, Puskar L, Schade U, Zanetti-Polzi L, Daidone I, Corni S, Rusconi F, Biagioni P, Baldassarre L, Ortolani M. Nano Lett; 2019 May 08; 19(5):3104-3114. PubMed ID: 30950626 [Abstract] [Full Text] [Related]
11. Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments. Dencher NA, Kohl KD, Heyn MP. Biochemistry; 1983 Mar 15; 22(6):1323-34. PubMed ID: 6838856 [Abstract] [Full Text] [Related]
12. Transient channel-opening in bacteriorhodopsin: an EPR study. Thorgeirsson TE, Xiao W, Brown LS, Needleman R, Lanyi JK, Shin YK. J Mol Biol; 1997 Nov 14; 273(5):951-7. PubMed ID: 9367783 [Abstract] [Full Text] [Related]
13. The projection structure of the low temperature K intermediate of the bacteriorhodopsin photocycle determined by electron diffraction. Bullough PA, Henderson R. J Mol Biol; 1999 Mar 12; 286(5):1663-71. PubMed ID: 10064722 [Abstract] [Full Text] [Related]
14. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin. Xu D, Sheves M, Schulten K. Biophys J; 1995 Dec 12; 69(6):2745-60. PubMed ID: 8599681 [Abstract] [Full Text] [Related]
15. Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85-->Asn. Nilsson A, Rath P, Olejnik J, Coleman M, Rothschild KJ. J Biol Chem; 1995 Dec 15; 270(50):29746-51. PubMed ID: 8530365 [Abstract] [Full Text] [Related]
16. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H. Biophys J; 2002 Dec 15; 83(6):3578-88. PubMed ID: 12496125 [Abstract] [Full Text] [Related]
17. Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography. Vonck J. EMBO J; 2000 May 15; 19(10):2152-60. PubMed ID: 10811606 [Abstract] [Full Text] [Related]
18. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport. Ludlam GJ, Rothschild KJ. FEBS Lett; 1997 May 05; 407(3):285-8. PubMed ID: 9175869 [Abstract] [Full Text] [Related]
19. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. Yamashita H, Inoue K, Shibata M, Uchihashi T, Sasaki J, Kandori H, Ando T. J Struct Biol; 2013 Oct 05; 184(1):2-11. PubMed ID: 23462099 [Abstract] [Full Text] [Related]
20. Resonance Raman and optical transient studies on the light-induced proton pump of bacteriorhodopsin reveal parallel photocycles. Eisfeld W, Pusch C, Diller R, Lohrmann R, Stockburger M. Biochemistry; 1993 Jul 20; 32(28):7196-215. PubMed ID: 8343509 [Abstract] [Full Text] [Related] Page: [Next] [New Search]