These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 38324985
21. Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system. Wang X, Jiang H, Zheng G, Liang J, Zhou L. Chemosphere; 2021 Jan; 262():127567. PubMed ID: 32755692 [Abstract] [Full Text] [Related]
22. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. Yang YK, Chen S, Yang DS, Zhang W, Wang HJ, Zeng RJ. Sci Total Environ; 2019 Oct 10; 686():869-877. PubMed ID: 31200307 [Abstract] [Full Text] [Related]
26. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans. Hou Q, Fang D, Liang J, Zhou L. PLoS One; 2015 Oct 10; 10(3):e0120966. PubMed ID: 25807372 [Abstract] [Full Text] [Related]
27. Performance and mechanisms of PropS-SH/Ce(dbp)3 coatings in the inhibition of pyrite oxidationtion for acid mine drainage control. Feng J, Zhou C, Yang Q, Dang Z, Zhang L. Environ Pollut; 2023 Apr 01; 322():121162. PubMed ID: 36716950 [Abstract] [Full Text] [Related]
28. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species. Bellenberg S, Barthen R, Boretska M, Zhang R, Sand W, Vera M. Appl Microbiol Biotechnol; 2015 Feb 01; 99(3):1435-49. PubMed ID: 25381488 [Abstract] [Full Text] [Related]
29. Suppressive effects of ferric-catecholate complexes on pyrite oxidation. Li X, Hiroyoshi N, Tabelin CB, Naruwa K, Harada C, Ito M. Chemosphere; 2019 Jan 01; 214():70-78. PubMed ID: 30257197 [Abstract] [Full Text] [Related]
31. Influence of heterotrophic microbial growth on biological oxidation of pyrite. Marchand EA, Silverstein J. Environ Sci Technol; 2002 Dec 15; 36(24):5483-90. PubMed ID: 12521179 [Abstract] [Full Text] [Related]
34. The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Zhu J, Gan M, Zhang D, Hu Y, Chai L. Mater Sci Eng C Mater Biol Appl; 2013 Jul 01; 33(5):2679-85. PubMed ID: 23623084 [Abstract] [Full Text] [Related]
35. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source. Wang S, Zhao Y, Li S. Environ Sci Pollut Res Int; 2019 Sep 01; 26(25):25725-25732. PubMed ID: 31267388 [Abstract] [Full Text] [Related]
36. Microbially Influenced Corrosion of Stainless Steel by Acidithiobacillus ferrooxidans Supplemented with Pyrite: Importance of Thiosulfate. Inaba Y, Xu S, Vardner JT, West AC, Banta S. Appl Environ Microbiol; 2019 Nov 01; 85(21):. PubMed ID: 31444204 [Abstract] [Full Text] [Related]
37. Acid mine drainage at the Bahia Gold Belt (Brazil): microbial isolation and characterization. Bernardez LA, de Oliveira LEL, de Andrade Lima LRP. Environ Monit Assess; 2021 Jan 13; 193(2):60. PubMed ID: 33442789 [Abstract] [Full Text] [Related]
38. Enhanced pyrite passivation by carrier-microencapsulation using Fe-catechol and Ti-catechol complexes. Li X, Park I, Tabelin CB, Naruwa K, Goda T, Harada C, Jeon S, Ito M, Hiroyoshi N. J Hazard Mater; 2021 Aug 15; 416():126089. PubMed ID: 34492902 [Abstract] [Full Text] [Related]
39. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. Jin D, Wang X, Liu L, Liang J, Zhou L. J Hazard Mater; 2020 Dec 05; 400():123108. PubMed ID: 32593016 [Abstract] [Full Text] [Related]
40. Reactive oxygen species formation driven by acidophiles mediated pyrite oxidation and its potential role on 2,4-dichlorophenol transformation. Zhou S, Tong G, Meng X, Wang Y, Gu G, Gan M. J Hazard Mater; 2022 Mar 05; 425():127833. PubMed ID: 34872039 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]