These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
623 related items for PubMed ID: 38325664
21. A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes. Nguyen MT, Kim SA, Cheng YY, Hong SH, Jin YS, Han NS. J Microbiol Biotechnol; 2023 Sep 28; 33(9):1228-1237. PubMed ID: 37415091 [Abstract] [Full Text] [Related]
22. Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9. Hosseini ES, Nikkhah M, Hosseinkhani S. Int J Nanomedicine; 2019 Sep 28; 14():4353-4366. PubMed ID: 31354265 [Abstract] [Full Text] [Related]
23. Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Mol Pharm; 2022 Jun 06; 19(6):1669-1686. PubMed ID: 35594500 [Abstract] [Full Text] [Related]
24. Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA. Woodward EA, Wang E, Wallis C, Sharma R, Tie AWJ, Murthy N, Blancafort P. Methods Mol Biol; 2024 Jun 06; 2842():267-287. PubMed ID: 39012601 [Abstract] [Full Text] [Related]
25. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V. AIDS Rev; 2017 Jun 06; 19(3):167-172. PubMed ID: 29019352 [Abstract] [Full Text] [Related]
26. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Kenjo E, Hozumi H, Makita Y, Iwabuchi KA, Fujimoto N, Matsumoto S, Kimura M, Amano Y, Ifuku M, Naoe Y, Inukai N, Hotta A. Nat Commun; 2021 Dec 08; 12(1):7101. PubMed ID: 34880218 [Abstract] [Full Text] [Related]
27. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing. Tatiossian KJ, Clark RDE, Huang C, Thornton ME, Grubbs BH, Cannon PM. Mol Ther; 2021 Mar 03; 29(3):1057-1069. PubMed ID: 33160457 [Abstract] [Full Text] [Related]
28. CES1-Triggered Liver-Specific Cargo Release of CRISPR/Cas9 Elements by Cationic Triadic Copolymeric Nanoparticles Targeting Gene Editing of PCSK9 for Hyperlipidemia Amelioration. Zhao Y, Li Y, Wang F, Gan X, Zheng T, Chen M, Wei L, Chen J, Yu C. Adv Sci (Weinh); 2023 Jul 03; 10(19):e2300502. PubMed ID: 37083231 [Abstract] [Full Text] [Related]
29. Lipo-Xenopeptide Polyplexes for CRISPR/Cas9 based Gene editing at ultra-low dose. Germer J, Lessl AL, Pöhmerer J, Grau M, Weidinger E, Höhn M, Yazdi M, Cappelluti MA, Lombardo A, Lächelt U, Wagner E. J Control Release; 2024 Jun 03; 370():239-255. PubMed ID: 38663751 [Abstract] [Full Text] [Related]
30. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. Abbasi S, Uchida S, Toh K, Tockary TA, Dirisala A, Hayashi K, Fukushima S, Kataoka K. J Control Release; 2021 Apr 10; 332():260-268. PubMed ID: 33647431 [Abstract] [Full Text] [Related]
31. Biomimetic Mineralization-Based CRISPR/Cas9 Ribonucleoprotein Nanoparticles for Gene Editing. Li S, Song Z, Liu C, Chen XL, Han H. ACS Appl Mater Interfaces; 2019 Dec 26; 11(51):47762-47770. PubMed ID: 31773942 [Abstract] [Full Text] [Related]
32. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 ribonucleoprotein. Chen K, Han H, Zhao S, Xu B, Yin B, Lawanprasert A, Trinidad M, Burgstone BW, Murthy N, Doudna JA. Nat Biotechnol; 2024 Oct 16. PubMed ID: 39415058 [Abstract] [Full Text] [Related]
33. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. Zhang WW, Matlashewski G. mSphere; 2019 Aug 21; 4(4):. PubMed ID: 31434745 [Abstract] [Full Text] [Related]
34. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA. Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ. Angew Chem Int Ed Engl; 2017 Jan 19; 56(4):1059-1063. PubMed ID: 27981708 [Abstract] [Full Text] [Related]
35. Delivery of Cas9/sgRNA Ribonucleoprotein Complexes via Hydroxystearyl Oligoamino Amides. Kuhn J, Lin Y, Krhac Levacic A, Al Danaf N, Peng L, Höhn M, Lamb DC, Wagner E, Lächelt U. Bioconjug Chem; 2020 Mar 18; 31(3):729-742. PubMed ID: 31967454 [Abstract] [Full Text] [Related]
36. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration. Bloomer H, Smith RH, Hakami W, Larochelle A. Mol Ther; 2021 Apr 07; 29(4):1611-1624. PubMed ID: 33309880 [Abstract] [Full Text] [Related]
37. Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. Dubey S, Chen Z, Jiang YJ, Talis A, Molotkov A, Ali A, Mintz A, Momen-Heravi F. Theranostics; 2024 Apr 07; 14(7):2777-2793. PubMed ID: 38773978 [Abstract] [Full Text] [Related]
38. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Chin JS, Chooi WH, Wang H, Ong W, Leong KW, Chew SY. Acta Biomater; 2019 May 07; 90():60-70. PubMed ID: 30978509 [Abstract] [Full Text] [Related]
39. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein. Dhokane D, Bhadra B, Dasgupta S. Mol Biol Rep; 2020 Nov 07; 47(11):8747-8755. PubMed ID: 33074412 [Abstract] [Full Text] [Related]
40. Small extracellular vesicle-mediated CRISPR-Cas9 RNP delivery for cardiac-specific genome editing. Mun D, Kang JY, Kim H, Yun N, Joung B. J Control Release; 2024 Jun 07; 370():798-810. PubMed ID: 38754633 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]