These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 3832980
1. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control. Vercesi AE. An Acad Bras Cienc; 1985 Sep; 57(3):369-75. PubMed ID: 3832980 [Abstract] [Full Text] [Related]
2. [Oxaloacetate-dependent calcium transport in rat liver mitochondria]. Zharova TV, Tiulina OV. Biokhimiia; 1993 Aug; 58(8):1188-98. PubMed ID: 8399766 [Abstract] [Full Text] [Related]
3. Menadione (2-methyl-1,4-naphthoquinone)-induced Ca2+ release from rat-liver mitochondria is caused by NAD(P)H oxidation. Moore GA, O'Brien PJ, Orrenius S. Xenobiotica; 1986 Sep; 16(9):873-82. PubMed ID: 3020812 [Abstract] [Full Text] [Related]
4. Effects of oxaloacetate and beta-hydroxybutyrate on rat liver mitochondrial calcium flow during starvation. Lucas M, Solano P, Galván A, Goberna R. Horm Metab Res; 1981 Aug; 13(8):438-41. PubMed ID: 7327521 [Abstract] [Full Text] [Related]
5. Oxaloacetate- and acetoacetate-induced calcium efflux from mitochondria occurs by reversal of the uptake pathway. Bardsley ME, Brand MD. Biochem J; 1982 Jan 15; 202(1):197-201. PubMed ID: 7082307 [Abstract] [Full Text] [Related]
6. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation. Wolkowicz PE, McMillin-Wood J. J Biol Chem; 1980 Nov 10; 255(21):10348-53. PubMed ID: 7430127 [Abstract] [Full Text] [Related]
7. Effects of nimesulide and its reduced metabolite on mitochondria. Mingatto FE, dos Santos AC, Rodrigues T, Pigoso AA, Uyemura SA, Curti C. Br J Pharmacol; 2000 Nov 10; 131(6):1154-60. PubMed ID: 11082123 [Abstract] [Full Text] [Related]
8. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP. Bernardes CF, Pereira da Silva L, Vercesi AE. Biochim Biophys Acta; 1986 Jun 10; 850(1):41-8. PubMed ID: 2423127 [Abstract] [Full Text] [Related]
9. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state. Schönfeld P, Bohnensack R, Böhme G, Kunz W. Biomed Biochim Acta; 1983 Jun 10; 42(1):3-13. PubMed ID: 6309158 [Abstract] [Full Text] [Related]
10. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Vercesi AE. Arch Biochem Biophys; 1987 Jan 10; 252(1):171-8. PubMed ID: 3813533 [Abstract] [Full Text] [Related]
11. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. Kushnareva YE, Sokolove PM. Arch Biochem Biophys; 2000 Apr 15; 376(2):377-88. PubMed ID: 10775426 [Abstract] [Full Text] [Related]
12. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III. Belyaeva EA, Glazunov VV, Korotkov SM. Chem Biol Interact; 2004 Dec 07; 150(3):253-70. PubMed ID: 15560892 [Abstract] [Full Text] [Related]
13. Ruthenium red-catalyzed degradation of peroxides can prevent mitochondrial oxidative damage induced by either tert-butyl hydroperoxide or inorganic phosphate. Meinicke AR, Bechara EJ, Vercesi AE. Arch Biochem Biophys; 1998 Jan 15; 349(2):275-80. PubMed ID: 9448715 [Abstract] [Full Text] [Related]
14. Dissociation of NAD(P)+-stimulated mitochondrial Ca2+ efflux from swelling and membrane damage. Vercesi AE. Arch Biochem Biophys; 1984 Jul 15; 232(1):86-91. PubMed ID: 6742863 [Abstract] [Full Text] [Related]
16. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Lê-Quôc D, Lê-Quôc K. Arch Biochem Biophys; 1989 Sep 15; 273(2):466-78. PubMed ID: 2774563 [Abstract] [Full Text] [Related]
17. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents. Custódio JB, Cardoso CM, Santos MS, Almeida LM, Vicente JA, Fernandes MA. Toxicology; 2009 May 02; 259(1-2):18-24. PubMed ID: 19428939 [Abstract] [Full Text] [Related]
18. [The effect of fluorocitrate on oxygen consumption and Ca2+ transport in the mitochondria of liver cells]. Teplova VV, Evtodienko IuV, Kholmukhamedov EL, Sergeenko NG, Goncharov NV. Tsitologiia; 1992 May 02; 34(11-12):71-5. PubMed ID: 1338819 [Abstract] [Full Text] [Related]
19. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Nicholls DG, Brand MD. Biochem J; 1980 Apr 15; 188(1):113-8. PubMed ID: 7406874 [Abstract] [Full Text] [Related]
20. Ca2+-dependent NAD(P)+-induced alterations of rat liver and hepatoma mitochondrial membrane permeability. Vercesi AE, Ferraz VL, Macedo DV, Fiskum G. Biochem Biophys Res Commun; 1988 Aug 15; 154(3):934-41. PubMed ID: 3136771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]