These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 38344313
21. Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. Sattary M, Rafienia M, Kazemi M, Salehi H, Mahmoudzadeh M. Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():141-155. PubMed ID: 30678899 [Abstract] [Full Text] [Related]
22. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N. In Vitro Cell Dev Biol Anim; 2016 Apr; 52(4):479-87. PubMed ID: 26822432 [Abstract] [Full Text] [Related]
23. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Biomater Adv; 2023 Jun; 149():213406. PubMed ID: 37054582 [Abstract] [Full Text] [Related]
24. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA. J Biomed Mater Res A; 2010 Apr; 93(1):247-57. PubMed ID: 19557787 [Abstract] [Full Text] [Related]
27. Enhanced osteogenic differentiation and mineralization of human dental pulp stem cells using Prunus amygdalus amara (bitter almond) incorporated nanofibrous scaffold. Valizadeh N, Salehi R, Aghazadeh M, Alipour M, Sadeghzadeh H, Mahkam M. J Mech Behav Biomed Mater; 2023 Jun; 142():105790. PubMed ID: 37104899 [Abstract] [Full Text] [Related]
28. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. Li D, Zhang K, Shi C, Liu L, Yan G, Liu C, Zhou Y, Hu Y, Sun H, Yang B. Int J Nanomedicine; 2018 Jun; 13():7167-7181. PubMed ID: 30464466 [Abstract] [Full Text] [Related]
34. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT, Liao HT, Kuo CY, Wong CB, Li CJ, P A M, Chen JP. Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [Abstract] [Full Text] [Related]
35. Nano-hydroxyapatite-incorporated polycaprolactone nanofibrous scaffold as a dentin tissue engineering-based strategy for vital pulp therapy. Mendes Soares IP, Anselmi C, Kitagawa FA, Ribeiro RAO, Leite ML, de Souza Costa CA, Hebling J. Dent Mater; 2022 Jun; 38(6):960-977. PubMed ID: 35331551 [Abstract] [Full Text] [Related]
36. Electrospun gelatin/PCL and collagen/PCL scaffolds for modulating responses of bone marrow endothelial progenitor cells. Hu Y, Feng B, Zhang W, Yan C, Yao Q, Shao C, Yu F, Li F, Fu Y. Exp Ther Med; 2019 May; 17(5):3717-3726. PubMed ID: 30988757 [Abstract] [Full Text] [Related]
39. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I. Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [Abstract] [Full Text] [Related]
40. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z, Song Y, Zhang J, Liu W, Cui J, Li H, Chen F. Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():341-351. PubMed ID: 28024596 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]