These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 38349197
1. Supersensitive detection of lincomycin with an ECL aptasensor based on the synergistic integration of gold-functionalized upconversion nanoparticles and thiolated 3,4,9,10-perylene tetracarboxylic acid. Chen X, Wen J, Shan X, Wang W, Chen Z. Analyst; 2024 Mar 11; 149(6):1746-1752. PubMed ID: 38349197 [Abstract] [Full Text] [Related]
2. C60@C3N4 nanocomposites as quencher for signal-off photoelectrochemical aptasensor with Au nanoparticle decorated perylene tetracarboxylic acid as platform. Yang L, Zhong X, Huang L, Deng H, Yuan R, Yuan Y. Anal Chim Acta; 2019 Oct 24; 1077():281-287. PubMed ID: 31307720 [Abstract] [Full Text] [Related]
3. Plasmon-Enhanced Electrochemiluminescence of PTP-Decorated Eu MOF-Based Pt-Tipped Au Bimetallic Nanorods for the Lincomycin Assay. Li J, Luo M, Jin C, Zhang P, Yang H, Cai R, Tan W. ACS Appl Mater Interfaces; 2022 Jan 12; 14(1):383-389. PubMed ID: 34978181 [Abstract] [Full Text] [Related]
4. Hemin as electrochemically regenerable co-reaction accelerator for construction of an ultrasensitive PTCA-based electrochemiluminescent aptasensor. Zeng WJ, Liao N, Lei YM, Zhao J, Chai YQ, Yuan R, Zhuo Y. Biosens Bioelectron; 2018 Feb 15; 100():490-496. PubMed ID: 28965054 [Abstract] [Full Text] [Related]
5. Au nanoparticle plasmon-enhanced electrochemiluminescence aptasensor based on the 1D/2D PTCA/CoP for diclofenac assay. Li J, Shan X, Jiang D, Wang W, Xu F, Chen Z. Mikrochim Acta; 2021 Jun 16; 188(7):231. PubMed ID: 34132907 [Abstract] [Full Text] [Related]
6. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay. Jiang X, Wang H, Wang H, Yuan R, Chai Y. Anal Chem; 2016 Sep 20; 88(18):9243-50. PubMed ID: 27529728 [Abstract] [Full Text] [Related]
7. Antenna effect of perylene-sensitized up-conversion luminescent material amplifies the signal of electrochemiluminescence biosensor platform for the ultra-sensitive detection of enrofloxacin. Cao Q, Jiang D, Dong M, An X, Xu F, Wang W, Chen Z. Biosens Bioelectron; 2023 Oct 01; 237():115541. PubMed ID: 37515948 [Abstract] [Full Text] [Related]
8. An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Saremi M, Amini A, Heydari H. Mikrochim Acta; 2019 Mar 22; 186(4):254. PubMed ID: 30903376 [Abstract] [Full Text] [Related]
9. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator. Huang X, Li Y, Zhang X, Zhang X, Chen Y, Gao W. Analyst; 2015 Sep 07; 140(17):6015-24. PubMed ID: 26191542 [Abstract] [Full Text] [Related]
10. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Li S, Liu C, Yin G, Zhang Q, Luo J, Wu N. Biosens Bioelectron; 2017 May 15; 91():687-691. PubMed ID: 28119249 [Abstract] [Full Text] [Related]
11. Electrochemiluminescence Resonance Energy Transfer System: Mechanism and Application in Ratiometric Aptasensor for Lead Ion. Lei YM, Huang WX, Zhao M, Chai YQ, Yuan R, Zhuo Y. Anal Chem; 2015 Aug 04; 87(15):7787-94. PubMed ID: 26153718 [Abstract] [Full Text] [Related]
12. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Khoshfetrat SM, Bagheri H, Mehrgardi MA. Biosens Bioelectron; 2018 Feb 15; 100():382-388. PubMed ID: 28950248 [Abstract] [Full Text] [Related]
14. Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pdnano/PTCA/aptamer as labeled aptamer for the signal amplification. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S. Anal Chim Acta; 2017 Sep 08; 985():61-68. PubMed ID: 28864195 [Abstract] [Full Text] [Related]
15. Sensitive detection of kanamycin based on ECL resonance energy transfer between iridium complex doped SiO2 nanospheres and Au nanoparticles decorated TiVC MXene. Yao H, Jia C, Dong Y. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep 05; 317():124399. PubMed ID: 38718747 [Abstract] [Full Text] [Related]
17. Ultrasensitive ECL aptasensing of kanamycin based on synergistic promotion strategy using 3,4,9,10-perylenetetracar-boxylic-l-cysteine/Au@HKUST-1. Wen J, Zhou L, Jiang D, Shan X, Wang W, Shiigi H, Chen Z. Anal Chim Acta; 2021 Oct 02; 1180():338780. PubMed ID: 34538325 [Abstract] [Full Text] [Related]
18. Novel electrochemiluminescence aptasensor based on AuNPs-ABEI encapsulated TiO2 nanorod for the detection of acetamiprid residues in vegetables. Sun J, Liu W, He Z, Li B, Dong H, Liu M, Huang J, Li P, Li D, Xu Y, Zhao S, Guo Y, Sun X. Talanta; 2024 Mar 01; 269():125471. PubMed ID: 38061203 [Abstract] [Full Text] [Related]
19. Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A. Kim K, Jo EJ, Lee KJ, Park J, Jung GY, Shin YB, Lee LP, Kim MG. Biosens Bioelectron; 2020 Feb 15; 150():111885. PubMed ID: 31759762 [Abstract] [Full Text] [Related]
20. An electrochemiluminescence sensor based on Ag NPs amplifying PDDA-modified TbPO4:Ce NWs signal for sensitive detection of lincomycin. Zhi J, Wang W, Mei X, Li Q, Jiang D, Shan X, Chen X, Chen Z. Bioelectrochemistry; 2024 Aug 15; 158():108702. PubMed ID: 38669976 [Abstract] [Full Text] [Related] Page: [Next] [New Search]