These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 38349751

  • 1. Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production.
    Huang M, Cui X, Zhang P, Jin Z, Li H, Liu J, Jiang Z.
    Prep Biochem Biotechnol; 2024 Sep; 54(8):1058-1067. PubMed ID: 38349751
    [Abstract] [Full Text] [Related]

  • 2. Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production.
    Li YC, Li GY, Gou M, Xia ZY, Tang YQ, Kida K.
    J Biosci Bioeng; 2016 Jun; 121(6):685-691. PubMed ID: 26645659
    [Abstract] [Full Text] [Related]

  • 3. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway.
    Tanino T, Ito T, Ogino C, Ohmura N, Ohshima T, Kondo A.
    J Biosci Bioeng; 2012 Aug; 114(2):209-11. PubMed ID: 22591844
    [Abstract] [Full Text] [Related]

  • 4. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK, Um Y, Woo HM, Kim KH, Lee SM.
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [Abstract] [Full Text] [Related]

  • 5. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.
    Hou J, Qiu C, Shen Y, Li H, Bao X.
    FEMS Yeast Res; 2017 Jun 01; 17(4):. PubMed ID: 28582494
    [Abstract] [Full Text] [Related]

  • 6. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ, Kim SR, Choi JH, Park MS, Jin YS.
    Appl Microbiol Biotechnol; 2011 Oct 01; 92(1):77-84. PubMed ID: 21655987
    [Abstract] [Full Text] [Related]

  • 7. Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae.
    Temer B, Dos Santos LV, Negri VA, Galhardo JP, Magalhães PHM, José J, Marschalk C, Corrêa TLR, Carazzolle MF, Pereira GAG.
    BMC Biotechnol; 2017 Sep 09; 17(1):71. PubMed ID: 28888227
    [Abstract] [Full Text] [Related]

  • 8. Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes.
    Li YC, Zeng WY, Gou M, Sun ZY, Xia ZY, Tang YQ.
    Appl Microbiol Biotechnol; 2017 Oct 09; 101(20):7741-7753. PubMed ID: 28900684
    [Abstract] [Full Text] [Related]

  • 9. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT.
    Adv Biochem Eng Biotechnol; 2007 Oct 09; 108():179-204. PubMed ID: 17846724
    [Abstract] [Full Text] [Related]

  • 10. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend.
    de Figueiredo Vilela L, de Mello VM, Reis VC, Bon EP, Gonçalves Torres FA, Neves BC, Eleutherio EC.
    Bioresour Technol; 2013 Jan 09; 128():792-6. PubMed ID: 23186665
    [Abstract] [Full Text] [Related]

  • 11. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
    Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A.
    Appl Microbiol Biotechnol; 2010 Nov 09; 88(5):1215-21. PubMed ID: 20853104
    [Abstract] [Full Text] [Related]

  • 12. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF.
    Yeast; 2005 Apr 15; 22(5):359-68. PubMed ID: 15806613
    [Abstract] [Full Text] [Related]

  • 13. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT.
    FEMS Yeast Res; 2003 Oct 15; 4(1):69-78. PubMed ID: 14554198
    [Abstract] [Full Text] [Related]

  • 14. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S, Jin YS.
    Microb Cell Fact; 2017 May 11; 16(1):82. PubMed ID: 28494761
    [Abstract] [Full Text] [Related]

  • 15. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation.
    Ota M, Sakuragi H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M.
    Biotechnol Prog; 2013 May 11; 29(2):346-51. PubMed ID: 23359609
    [Abstract] [Full Text] [Related]

  • 16. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption.
    Hector RE, Qureshi N, Hughes SR, Cotta MA.
    Appl Microbiol Biotechnol; 2008 Sep 11; 80(4):675-84. PubMed ID: 18629494
    [Abstract] [Full Text] [Related]

  • 17. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EP, Stambuk BU.
    Enzyme Microb Technol; 2014 Sep 11; 63():13-20. PubMed ID: 25039054
    [Abstract] [Full Text] [Related]

  • 18. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V, Brunner B, Müller G, Nidetzky B.
    Biotechnol Bioeng; 2017 Jan 11; 114(1):163-171. PubMed ID: 27426989
    [Abstract] [Full Text] [Related]

  • 19. Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides.
    Zan X, Sun J, Chu L, Cui F, Huo S, Song Y, Koffas MAG.
    Appl Microbiol Biotechnol; 2021 Jul 11; 105(13):5565-5575. PubMed ID: 34215904
    [Abstract] [Full Text] [Related]

  • 20. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.
    Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G.
    Metab Eng; 2012 Nov 11; 14(6):611-22. PubMed ID: 22921355
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.