These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 38352056

  • 1. MEK1/2 inhibition decreases pro-inflammatory responses in macrophages from people with cystic fibrosis and mitigates severity of illness in experimental murine methicillin-resistant Staphylococcus aureus infection.
    De M, Serpa G, Zuiker E, Hisert KB, Liles WC, Manicone AM, Hemann EA, Long ME.
    Front Cell Infect Microbiol; 2024; 14():1275940. PubMed ID: 38352056
    [Abstract] [Full Text] [Related]

  • 2. MEK1/2 inhibition decreases pro-inflammatory responses in macrophages from people with cystic fibrosis and mitigates severity of illness in experimental murine methicillin-resistant Staphylococcus aureus infection.
    De M, Hisert KB, Liles WC, Manicone AM, Hemann EA, Long ME.
    bioRxiv; 2023 Jan 22. PubMed ID: 36712028
    [Abstract] [Full Text] [Related]

  • 3. Azithromycin Augments Bacterial Uptake and Anti-Inflammatory Macrophage Polarization in Cystic Fibrosis.
    Tarique AA, Tuladhar N, Kelk D, Begum N, Lucas RM, Luo L, Stow JL, Wainwright CE, Bell SC, Sly PD, Fantino E.
    Cells; 2024 Jan 16; 13(2):. PubMed ID: 38247856
    [Abstract] [Full Text] [Related]

  • 4. Time-to-first-isolation of methicillin-resistant Staphylococcus aureus (MRSA) in cystic fibrosis (CF): An underutilised metric in infection control?
    Moore JE, Rendall JC, Millar BC.
    Infect Dis Health; 2023 Nov 16; 28(4):265-270. PubMed ID: 37258345
    [Abstract] [Full Text] [Related]

  • 5. Dual Role For A MEK Inhibitor As A Modulator Of Inflammation And Host Defense Mechanisms With Potential Therapeutic Application In COPD.
    Kurian N, Cohen TS, Öberg L, De Zan E, Skogberg G, Vollmer S, Baturcam E, Svanberg P, Bonn B, Smith PD, Vaarala O, Cunoosamy DM.
    Int J Chron Obstruct Pulmon Dis; 2019 Nov 16; 14():2611-2624. PubMed ID: 32063702
    [Abstract] [Full Text] [Related]

  • 6. Antibiotic management of methicillin-resistant Staphylococcus aureus--associated acute pulmonary exacerbations in cystic fibrosis.
    Fusco NM, Toussaint KA, Prescott WA.
    Ann Pharmacother; 2015 Apr 16; 49(4):458-68. PubMed ID: 25583881
    [Abstract] [Full Text] [Related]

  • 7. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis.
    Marteyn BS, Burgel PR, Meijer L, Witko-Sarsat V.
    Front Cell Infect Microbiol; 2017 Apr 16; 7():243. PubMed ID: 28713772
    [Abstract] [Full Text] [Related]

  • 8. The Virulence Potential of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Cultured from the Airways of Cystic Fibrosis Patients.
    Treffon J, Fotiadis SA, van Alen S, Becker K, Kahl BC.
    Toxins (Basel); 2020 May 30; 12(6):. PubMed ID: 32486247
    [Abstract] [Full Text] [Related]

  • 9. Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections.
    Chmiel JF, Aksamit TR, Chotirmall SH, Dasenbrook EC, Elborn JS, LiPuma JJ, Ranganathan SC, Waters VJ, Ratjen FA.
    Ann Am Thorac Soc; 2014 Sep 30; 11(7):1120-9. PubMed ID: 25102221
    [Abstract] [Full Text] [Related]

  • 10. Antibiotic Tolerance and Treatment Outcomes in Cystic Fibrosis Methicillin-Resistant Staphylococcus aureus Infections.
    Lu KY, Wagner NJ, Velez AZ, Ceppe A, Conlon BP, Muhlebach MS.
    Microbiol Spectr; 2023 Feb 14; 11(1):e0406122. PubMed ID: 36519944
    [Abstract] [Full Text] [Related]

  • 11. In vivo attenuation and genetic evolution of a ST247-SCCmecI MRSA clone after 13 years of pathogenic bronchopulmonary colonization in a patient with cystic fibrosis: implications of the innate immune response.
    López-Collazo E, Jurado T, de Dios Caballero J, Pérez-Vázquez M, Vindel A, Hernández-Jiménez E, Tamames J, Cubillos-Zapata C, Manrique M, Tobes R, Máiz L, Cantón R, Baquero F, Del Campo R.
    Mucosal Immunol; 2015 Mar 14; 8(2):362-71. PubMed ID: 25118167
    [Abstract] [Full Text] [Related]

  • 12. 2-O, 3-O desulfated heparin (ODSH) increases bacterial clearance and attenuates lung injury in cystic fibrosis by restoring HMGB1-compromised macrophage function.
    Wang M, Gauthier AG, Kennedy TP, Wang H, Velagapudi UK, Talele TT, Lin M, Wu J, Daley L, Yang X, Patel V, Mun SS, Ashby CR, Mantell LL.
    Mol Med; 2021 Jul 16; 27(1):79. PubMed ID: 34271850
    [Abstract] [Full Text] [Related]

  • 13. Combining Ivacaftor and Intensive Antibiotics Achieves Limited Clearance of Cystic Fibrosis Infections.
    Durfey SL, Pipavath S, Li A, Vo AT, Ratjen A, Carter S, Morgan SJ, Radey MC, Grogan B, Salipante SJ, Welsh MJ, Stoltz DA, Goss CH, McKone EF, Singh PK.
    mBio; 2021 Dec 21; 12(6):e0314821. PubMed ID: 34903059
    [Abstract] [Full Text] [Related]

  • 14. Multicenter Observational Study on Factors and Outcomes Associated with Various Methicillin-Resistant Staphylococcus aureus Types in Children with Cystic Fibrosis.
    Muhlebach MS, Heltshe SL, Popowitch EB, Miller MB, Thompson V, Kloster M, Ferkol T, Hoover WC, Schechter MS, Saiman L, STAR-CF Study Team.
    Ann Am Thorac Soc; 2015 Jun 21; 12(6):864-71. PubMed ID: 25745825
    [Abstract] [Full Text] [Related]

  • 15. Ethnic differences in staphylococcus aureus acquisition in cystic fibrosis.
    McGarry ME, Huang CY, Ly NP.
    J Cyst Fibros; 2023 Sep 21; 22(5):909-915. PubMed ID: 37460380
    [Abstract] [Full Text] [Related]

  • 16. Activity of Telavancin against Staphylococcus aureus Isolates, Including Those with Decreased Susceptibility to Ceftaroline, from Cystic Fibrosis Patients.
    Roch M, Varela MC, Taglialegna A, Rose WE, Rosato AE.
    Antimicrob Agents Chemother; 2018 Sep 21; 62(9):. PubMed ID: 29914961
    [Abstract] [Full Text] [Related]

  • 17. CFTR is required for zinc-mediated antibacterial defense in human macrophages.
    Das Gupta K, Curson JEB, Tarique AA, Kapetanovic R, Schembri MA, Fantino E, Sly PD, Sweet MJ.
    Proc Natl Acad Sci U S A; 2024 Feb 20; 121(8):e2315190121. PubMed ID: 38363865
    [Abstract] [Full Text] [Related]

  • 18. The role of Staphylococcus aureus in cystic fibrosis pathogenesis and clinico-microbiological interactions.
    Sheykhsaran E, Abbasi A, Memar MY, Ghotaslou R, Baghi HB, Mazraeh FN, Laghousi D, Sadeghi J.
    Diagn Microbiol Infect Dis; 2024 Jul 20; 109(3):116294. PubMed ID: 38678689
    [Abstract] [Full Text] [Related]

  • 19. Biofilm-forming strains of P. aeruginosa and S. aureus isolated from cystic fibrosis patients differently affect inflammatory phenotype of macrophages.
    Ciszek-Lenda M, Majka G, Suski M, Walczewska M, Górska S, Golińska E, Fedor A, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J.
    Inflamm Res; 2023 Jun 20; 72(6):1275-1289. PubMed ID: 37253897
    [Abstract] [Full Text] [Related]

  • 20. Intestinal Bacteroides modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis.
    Price CE, Valls RA, Ramsey AR, Loeven NA, Jones JT, Barrack KE, Schwartzman JD, Royce DB, Cramer RA, Madan JC, Ross BD, Bliska J, O'Toole GA.
    mBio; 2024 Feb 14; 15(2):e0314423. PubMed ID: 38179971
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.