These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury. Zhou Q, Xiang H, Li A, Lin W, Huang Z, Guo J, Wang P, Chi Y, Xiang K, Xu Y, Zhou L, So KF, Chen X, Sun X, Ren Y. J Neurotrauma; 2019 Mar 19; 36(6):903-918. PubMed ID: 30221582 [Abstract] [Full Text] [Related]
4. Myelin and non-myelin debris contribute to foamy macrophage formation after spinal cord injury. Ryan CB, Choi JS, Al-Ali H, Lee JK. Neurobiol Dis; 2022 Feb 19; 163():105608. PubMed ID: 34979258 [Abstract] [Full Text] [Related]
5. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, He X, Young W, Ren Y. Glia; 2015 Apr 19; 63(4):635-51. PubMed ID: 25452166 [Abstract] [Full Text] [Related]
6. The effects of myelin on macrophage activation are phenotypic specific via cPLA2 in the context of spinal cord injury inflammation. Kopper TJ, Zhang B, Bailey WM, Bethel KE, Gensel JC. Sci Rep; 2021 Mar 18; 11(1):6341. PubMed ID: 33737707 [Abstract] [Full Text] [Related]
7. Targeting foamy macrophages by manipulating ABCA1 expression to facilitate lesion healing in the injured spinal cord. Wang X, Cheng Z, Tai W, Shi M, Ayazi M, Liu Y, Sun L, Yu C, Fan Z, Guo B, He X, Sun D, Young W, Ren Y. Brain Behav Immun; 2024 Jul 18; 119():431-453. PubMed ID: 38636566 [Abstract] [Full Text] [Related]
8. D-4F, an apolipoprotein A-I mimetic, promotes the clearance of myelin debris and the reduction of foamy macrophages after spinal cord injury. Li J, Zhu Z, Li Y, Chen Y, Hu X, Liu Y, Shi Y, Hu Y, Bi Y, Xu X, Zheng M, Cheng L, Jing J. Bioengineered; 2022 May 18; 13(5):11794-11809. PubMed ID: 35546071 [Abstract] [Full Text] [Related]
9. Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury. Kong FQ, Zhao SJ, Sun P, Liu H, Jie J, Xu T, Xu AD, Yang YQ, Zhu Y, Chen J, Zhou Z, Qian DF, Gu CJ, Chen Q, Yin GY, Zhang HW, Fan J. J Neuroinflammation; 2020 Feb 17; 17(1):62. PubMed ID: 32066456 [Abstract] [Full Text] [Related]
10. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. Kopper TJ, Gensel JC. J Neurosci Res; 2018 Jun 17; 96(6):969-977. PubMed ID: 28696010 [Abstract] [Full Text] [Related]
11. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Lindfors S, Polianskyte-Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, Tienari J, Salmenkari H, Forsgård R, Mirtti T, Lehto M, Groop PH, Lehtonen S. Diabetologia; 2021 Aug 17; 64(8):1866-1879. PubMed ID: 33987714 [Abstract] [Full Text] [Related]
12. Protective Effects of Estrogen via Nanoparticle Delivery to Attenuate Myelin Loss and Neuronal Death after Spinal Cord Injury. Haque A, Drasites KP, Cox A, Capone M, Myatich AI, Shams R, Matzelle D, Garner DP, Bredikhin M, Shields DC, Vertegel A, Banik NL. Neurochem Res; 2021 Nov 17; 46(11):2979-2990. PubMed ID: 34269965 [Abstract] [Full Text] [Related]
13. Metformin promotes microglial cells to facilitate myelin debris clearance and accelerate nerve repairment after spinal cord injury. Wu YQ, Xiong J, He ZL, Yuan Y, Wang BN, Xu JY, Wu M, Zhang SS, Cai SF, Zhao JX, Xu K, Zhang HY, Xiao J. Acta Pharmacol Sin; 2022 Jun 17; 43(6):1360-1371. PubMed ID: 34480113 [Abstract] [Full Text] [Related]
14. PI3K signaling promotes formation of lipid-laden foamy macrophages at the spinal cord injury site. Ryan CB, Choi JS, Kang B, Herr S, Pereira C, Moraes CT, Al-Ali H, Lee JK. Neurobiol Dis; 2024 Jan 17; 190():106370. PubMed ID: 38049013 [Abstract] [Full Text] [Related]
15. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. Imai M, Watanabe M, Suyama K, Osada T, Sakai D, Kawada H, Matsumae M, Mochida J. J Neurosurg Spine; 2008 Jan 17; 8(1):58-66. PubMed ID: 18173348 [Abstract] [Full Text] [Related]
16. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. Zhu Y, Lyapichev K, Lee DH, Motti D, Ferraro NM, Zhang Y, Yahn S, Soderblom C, Zha J, Bethea JR, Spiller KL, Lemmon VP, Lee JK. J Neurosci; 2017 Mar 01; 37(9):2362-2376. PubMed ID: 28130359 [Abstract] [Full Text] [Related]
17. Timing and duration of anti-alpha4beta1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. Fleming JC, Bao F, Chen Y, Hamilton EF, Gonzalez-Lara LE, Foster PJ, Weaver LC. J Neurosurg Spine; 2009 Nov 01; 11(5):575-87. PubMed ID: 19929361 [Abstract] [Full Text] [Related]
18. [AdipoRon Effect on Expression of Lipid Metabolism Genes in Cultured Human Primary Macrophages]. Pobozheva IA, Dracheva KV, Pchelina SN, Miroshnikova VV. Mol Biol (Mosk); 2023 Nov 01; 57(4):623-631. PubMed ID: 37528782 [Abstract] [Full Text] [Related]
19. Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Vallières N, Berard JL, David S, Lacroix S. Glia; 2006 Jan 01; 53(1):103-13. PubMed ID: 16206158 [Abstract] [Full Text] [Related]
20. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris. Sheng X, Zhao J, Li M, Xu Y, Zhou Y, Xu J, He R, Lu H, Wu T, Duan C, Cao Y, Hu J. Front Cell Dev Biol; 2021 Jan 01; 9():772205. PubMed ID: 34820385 [Abstract] [Full Text] [Related] Page: [Next] [New Search]