These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 3839437

  • 41. Simultaneous measurement of Ca2+ in muscle with Ca electrodes and aequorin. Diffusible cytoplasmic constituent reduces Ca(2+)-independent luminescence of aequorin.
    Blatter LA, Blinks JR.
    J Gen Physiol; 1991 Dec; 98(6):1141-60. PubMed ID: 1783896
    [Abstract] [Full Text] [Related]

  • 42. Intracellular calcium measured with calcium-sensitive micro-electrodes and Arsenazo III in voltage-clamped Aplysia neurones.
    Gorman AL, Levy S, Nasi E, Tillotson D.
    J Physiol; 1984 Aug; 353():127-42. PubMed ID: 6434727
    [Abstract] [Full Text] [Related]

  • 43. Resting cytoplasmic free Ca2+ concentration in frog skeletal muscle measured with fura-2 conjugated to high molecular weight dextran.
    Konishi M, Watanabe M.
    J Gen Physiol; 1995 Dec; 106(6):1123-50. PubMed ID: 8786353
    [Abstract] [Full Text] [Related]

  • 44. Disruptive effects of protein on performance of liquid membrane-based ion-selective microelectrodes.
    Coombs HV, Miller AJ, Sanders D.
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C1027-35. PubMed ID: 7943265
    [Abstract] [Full Text] [Related]

  • 45. The effects of extracellular magnesium on myoplasmic [Ca2+] in malignant hyperthermia susceptible swine.
    Lopez JR, Sanchez V, Lopez I, Ryan JF, Mendoza M, Sreter FA, Allen PD.
    Anesthesiology; 1990 Jul; 73(1):109-17. PubMed ID: 2360720
    [Abstract] [Full Text] [Related]

  • 46. Cationic membrane conductances induced by intracellularly elevated cAMP and Ca2+: measurements with ion-selective microelectrodes.
    Swandulla D.
    Can J Physiol Pharmacol; 1987 May; 65(5):898-903. PubMed ID: 2441831
    [Abstract] [Full Text] [Related]

  • 47. Modulation of cytosolic free calcium concentration by alpha 1-adrenoceptors in rat atrial cells.
    Jahnel U, Nawrath H, Shieh RC, Sharma VK, Williford DJ, Sheu SS.
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Jul; 346(1):88-93. PubMed ID: 1357558
    [Abstract] [Full Text] [Related]

  • 48. A new design of double-barrelled microelectrodes for intracellular pH-measurement in vivo.
    Hagberg H, Larsson S, Haljamäe H.
    Acta Physiol Scand; 1983 Jun; 118(2):149-53. PubMed ID: 6414249
    [Abstract] [Full Text] [Related]

  • 49. Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration.
    Peracchia C.
    J Membr Biol; 1990 Jan; 113(1):75-92. PubMed ID: 2304073
    [Abstract] [Full Text] [Related]

  • 50. Intracellular calcium activity in split frog skin epithelium: effect of cAMP.
    Kelepouris E, Agus ZS, Civan MM.
    J Membr Biol; 1985 Jan; 88(2):113-21. PubMed ID: 3005583
    [Abstract] [Full Text] [Related]

  • 51. Intracellular Na+ and Ca2+ in leech Retzius neurones during inhibition of the Na+-K+ pump.
    Deitmer JW, Schlue WR.
    Pflugers Arch; 1983 May; 397(3):195-201. PubMed ID: 6878007
    [Abstract] [Full Text] [Related]

  • 52. Independent changes of intracellular calcium and pH in identified leech glial cells.
    Deitmer JW, Schneider HP, Munsch T.
    Glia; 1993 Apr; 7(4):299-306. PubMed ID: 8391515
    [Abstract] [Full Text] [Related]

  • 53. Changes in the intracellular free calcium concentration of Aplysia and leech neurones measured with calcium-sensitive microelectrodes.
    Deitmer JW, Eckert R, Schlue WR.
    Can J Physiol Pharmacol; 1987 May; 65(5):934-9. PubMed ID: 3113707
    [Abstract] [Full Text] [Related]

  • 54. Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurones.
    Schwiening CJ, Thomas RC.
    J Physiol; 1996 Mar 15; 491 ( Pt 3)(Pt 3):621-33. PubMed ID: 8815198
    [Abstract] [Full Text] [Related]

  • 55. Calcium clamp in isolated neurones of the snail Helix pomatia.
    Belan P, Kostyuk P, Snitsarev V, Tepikin A.
    J Physiol; 1993 Mar 15; 462():47-58. PubMed ID: 8392572
    [Abstract] [Full Text] [Related]

  • 56. Effects of ouabain on intracellular ion activities of sensory neurons of the leech central nervous system.
    Schlue WR.
    J Neurophysiol; 1991 Mar 15; 65(3):736-46. PubMed ID: 1711107
    [Abstract] [Full Text] [Related]

  • 57. In situ real-time sequential potentiometric determinations of potassium concentrations from three cochlear regions in noise-exposed rats.
    Ma YL, Gerhardt KJ, Rybak LP, Curtis LM, Rarey KE.
    Eur Arch Otorhinolaryngol; 1996 Mar 15; 253(4-5):201-4. PubMed ID: 8737770
    [Abstract] [Full Text] [Related]

  • 58. An Electrochemophysiological Microarray for Real-Time Monitoring and Quantification of Multiple Ions in the Brain of a Freely Moving Rat.
    Zhao F, Liu Y, Dong H, Feng S, Shi G, Lin L, Tian Y.
    Angew Chem Int Ed Engl; 2020 Jun 22; 59(26):10426-10430. PubMed ID: 32190959
    [Abstract] [Full Text] [Related]

  • 59. Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ, Rink TJ, Tsien RY.
    J Physiol; 1981 Jun 22; 315():531-48. PubMed ID: 6273543
    [Abstract] [Full Text] [Related]

  • 60. Ionic activities in cardiac muscle cells and application of ion-selective microelectrodes.
    Lee CO.
    Am J Physiol; 1981 Oct 22; 241(4):H459-78. PubMed ID: 7032323
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.