These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 3839437

  • 61. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure.
    Knot HJ, Nelson MT.
    J Physiol; 1998 Apr 01; 508 ( Pt 1)(Pt 1):199-209. PubMed ID: 9490839
    [Abstract] [Full Text] [Related]

  • 62. Measurement of intracellular Ca2+ activity in Necturus gallbladder.
    Palant CE, Kurtz I.
    Am J Physiol; 1987 Aug 01; 253(2 Pt 1):C309-15. PubMed ID: 3618764
    [Abstract] [Full Text] [Related]

  • 63. Viewing the kidney through microelectrodes.
    Frömter E.
    Am J Physiol; 1984 Nov 01; 247(5 Pt 2):F695-705. PubMed ID: 6093585
    [Abstract] [Full Text] [Related]

  • 64. Periodic increase of cytoplasmic free calcium in fertilized hamster eggs measured with calcium-sensitive electrodes.
    Igusa Y, Miyazaki S.
    J Physiol; 1986 Aug 01; 377():193-205. PubMed ID: 2432241
    [Abstract] [Full Text] [Related]

  • 65. Histamine selective microelectrode based on a synthetic organic liquid ion exchanger.
    Bi Y.
    Biosensors; 1989 Aug 01; 4(6):373-80. PubMed ID: 2818654
    [Abstract] [Full Text] [Related]

  • 66. Ion-selective microelectrodes: theory and technique.
    Armstrong WM, Garcia-Diaz JF.
    Fed Proc; 1980 Sep 01; 39(11):2851-9. PubMed ID: 7409206
    [Abstract] [Full Text] [Related]

  • 67. Bias current modifies the selectivity of liquid membrane ion-selective microelectrodes.
    Coles JA.
    Pflugers Arch; 1988 Mar 01; 411(3):339-44. PubMed ID: 3380648
    [Abstract] [Full Text] [Related]

  • 68. Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin 2.
    Williams DA, Fay FS.
    Am J Physiol; 1986 May 01; 250(5 Pt 1):C779-91. PubMed ID: 3085513
    [Abstract] [Full Text] [Related]

  • 69. Identification of membrane transport processes in renal cells, by means of liquid ion exchanger microelectrodes.
    Anagnostopoulos T.
    J Physiol (Paris); 1984 May 01; 79(6):401-5. PubMed ID: 6100308
    [Abstract] [Full Text] [Related]

  • 70.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 71.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 72.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 73. Cell contamination due to the use of carrier-based microelectrodes.
    Oesch U, Ammann D, Simon W.
    Can J Physiol Pharmacol; 1987 May 01; 65(5):885-8. PubMed ID: 3621050
    [Abstract] [Full Text] [Related]

  • 74.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 75.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 76.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 77.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 78.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 79. Triple-barrelled ion-sensitive microelectrode for simultaneous measurements of two extracellular ion activities.
    Dufau E, Acker H, Sylvester D.
    Med Prog Technol; 1982 May 01; 9(1):33-8. PubMed ID: 6290863
    [Abstract] [Full Text] [Related]

  • 80. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry.
    Kume-Kick J, Rice ME.
    J Neurosci Methods; 1998 Oct 01; 84(1-2):55-62. PubMed ID: 9821634
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.