These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 38403133

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants.
    Miao Y, Johnson NW, Gedalanga PB, Adamson D, Newell C, Mahendra S.
    Water Res; 2019 Feb 01; 149():74-85. PubMed ID: 30419469
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM, Calvo-Bado L, Mines P, Bugg TDH.
    Microb Cell Fact; 2021 Jan 19; 20(1):15. PubMed ID: 33468127
    [Abstract] [Full Text] [Related]

  • 29. Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition.
    Tajparast M, Frigon D.
    BMC Syst Biol; 2015 Aug 07; 9():43. PubMed ID: 26248853
    [Abstract] [Full Text] [Related]

  • 30. Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic Azoarcus sp. Strain DD4.
    Deng D, Pham DN, Li F, Li M.
    Appl Environ Microbiol; 2020 Aug 18; 86(17):. PubMed ID: 32591384
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A Synthetic Biology Approach Using Engineered Bacteria to Detect Perfluoroalkyl Substance (PFAS) Contamination in Water.
    Young NA, Lambert RL, Buch AM, Dahl CL, Harris JD, Barnhart MD, Sitko JC, Jordan Steel J.
    Mil Med; 2021 Jan 25; 186(Suppl 1):801-807. PubMed ID: 33499536
    [Abstract] [Full Text] [Related]

  • 34. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California.
    Li M, Van Orden ET, DeVries DJ, Xiong Z, Hinchee R, Alvarez PJ.
    Biodegradation; 2015 Feb 25; 26(1):39-50. PubMed ID: 25280838
    [Abstract] [Full Text] [Related]

  • 35. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J, Rucká L, Šimčíková M, Halada P, Nešvera J, Pátek M.
    Appl Microbiol Biotechnol; 2014 Oct 25; 98(19):8267-79. PubMed ID: 24938209
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Simulation of in situ biodegradation of 1,4-dioxane under metabolic and cometabolic conditions.
    Barajas-Rodriguez FJ, Murdoch LC, Falta RW, Freedman DL.
    J Contam Hydrol; 2019 Jun 25; 223():103464. PubMed ID: 30910507
    [Abstract] [Full Text] [Related]

  • 39. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.
    Wilson FP, Cupples AM.
    Appl Microbiol Biotechnol; 2016 Aug 25; 100(16):7297-309. PubMed ID: 27118012
    [Abstract] [Full Text] [Related]

  • 40. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane.
    Ramos-García ÁA, Walecka-Hutchison C, Freedman DL.
    Biodegradation; 2022 Apr 25; 33(2):157-168. PubMed ID: 35102492
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.