These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 38422576
21. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. Hu Z, Wu Q, Dalal J, Vasani N, Lopez HO, Sederoff HW, Qu R. PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406 [Abstract] [Full Text] [Related]
22. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. Marmon S, Sturtevant D, Herrfurth C, Chapman K, Stymne S, Feussner I. Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891 [Abstract] [Full Text] [Related]
23. Interactions between genetics and environment shape Camelina seed oil composition. Brock JR, Scott T, Lee AY, Mosyakin SL, Olsen KM. BMC Plant Biol; 2020 Sep 14; 20(1):423. PubMed ID: 32928104 [Abstract] [Full Text] [Related]
24. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina. Li M, Wei F, Tawfall A, Tang M, Saettele A, Wang X. Plant Biotechnol J; 2015 Aug 14; 13(6):766-78. PubMed ID: 25557877 [Abstract] [Full Text] [Related]
25. Simultaneous Targeting of Multiple Gene Homeologs to Alter Seed Oil Production in Camelina sativa. Aznar-Moreno JA, Durrett TP. Plant Cell Physiol; 2017 Jul 01; 58(7):1260-1267. PubMed ID: 28444368 [Abstract] [Full Text] [Related]
26. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Na G, Mu X, Grabowski P, Schmutz J, Lu C. Plant J; 2019 Apr 01; 98(2):346-358. PubMed ID: 30604453 [Abstract] [Full Text] [Related]
27. Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol. Yin Y, Raboanatahiry N, Chen K, Chen X, Tian T, Jia J, He H, He J, Guo Z, Yu L, Li M. Plant J; 2022 Dec 01; 112(5):1141-1158. PubMed ID: 36209492 [Abstract] [Full Text] [Related]
29. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP. Plant Biotechnol J; 2017 May 01; 15(5):648-657. PubMed ID: 27862889 [Abstract] [Full Text] [Related]
30. Lipidome analysis and characterization of Buglossoides arvensis acyltransferases that incorporate polyunsaturated fatty acids into triacylglycerols. Parchuri P, Pappanoor A, Naeem A, Durrett TP, Welti R, R V S. Plant Sci; 2022 Nov 01; 324():111445. PubMed ID: 36037983 [Abstract] [Full Text] [Related]
31. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Abdullah HM, Akbari P, Paulose B, Schnell D, Qi W, Park Y, Pareek A, Dhankher OP. Biotechnol Biofuels; 2016 Nov 01; 9():136. PubMed ID: 27382413 [Abstract] [Full Text] [Related]
32. Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in Camelina sativa. Lee KR, Yeo Y, Lee J, Kim S, Im C, Kim I, Lee J, Lee SK, Suh MC, Kim HU. Int J Mol Sci; 2024 Jun 25; 25(13):. PubMed ID: 39000052 [Abstract] [Full Text] [Related]
34. Acyltransferases Regulate Oil Quality in Camelina sativa Through Both Acyl Donor and Acyl Acceptor Specificities. Lager I, Jeppson S, Gippert AL, Feussner I, Stymne S, Marmon S. Front Plant Sci; 2020 Jun 25; 11():1144. PubMed ID: 32922411 [Abstract] [Full Text] [Related]
36. Reorganization of Acyl Flux through the Lipid Metabolic Network in Oil-Accumulating Tobacco Leaves. Zhou XR, Bhandari S, Johnson BS, Kotapati HK, Allen DK, Vanhercke T, Bates PD. Plant Physiol; 2020 Feb 25; 182(2):739-755. PubMed ID: 31792147 [Abstract] [Full Text] [Related]
37. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil. Bengtsson JD, Wallis JG, Bai S, Browse J. Plant Biotechnol J; 2023 Mar 25; 21(3):497-505. PubMed ID: 36382992 [Abstract] [Full Text] [Related]