These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 38427169

  • 1. Carbide lime as substrates to boost energy recuperation and dyestuff removal in constructed wetland-microbial fuel cell integrated with copper oxide/carbon cloth cathode.
    Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, Lin H.
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23647-23663. PubMed ID: 38427169
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell - constructed wetland treating carbon constraint wastewater.
    Tao M, Kong Y, Jing Z, Jia Q, Tao Z, Li YY.
    Bioresour Technol; 2022 Nov; 363():127902. PubMed ID: 36075346
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems.
    Srivastava P, Dwivedi S, Kumar N, Abbassi R, Garaniya V, Yadav AK.
    Bioresour Technol; 2017 Nov; 244(Pt 1):1178-1182. PubMed ID: 28844691
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential.
    Htet Htet H, Dolphen R, Jirasereeamornkul K, Thiravetyan P.
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96163-96180. PubMed ID: 37566335
    [Abstract] [Full Text] [Related]

  • 14. Comparative study on the treatment of swine wastewater by VFCW-MFC and VFCW: Pollutants removal, electricity generation, microorganism community.
    Guo J, Li Q, Gao Q, Shen F, Yang Y, Zhang X, Luo H.
    J Environ Manage; 2023 Sep 15; 342():118299. PubMed ID: 37269721
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.
    Saz Ç, Türe C, Türker OC, Yakar A.
    Environ Sci Pollut Res Int; 2018 Mar 15; 25(9):8777-8792. PubMed ID: 29327193
    [Abstract] [Full Text] [Related]

  • 17. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B, Zhao Y, Yang Y, Tang C, Dai Y, Zhang X, Tai Y, Tao R, Ruan W.
    Sci Total Environ; 2022 Feb 20; 808():152078. PubMed ID: 34863746
    [Abstract] [Full Text] [Related]

  • 18. Dual role of macrophytes in constructed wetland-microbial fuel cells using pyrrhotite as cathode material: A comparative assessment.
    Yang Y, Zhao Y, Tang C, Liu R, Chen T.
    Chemosphere; 2021 Jan 20; 263():128354. PubMed ID: 33297276
    [Abstract] [Full Text] [Related]

  • 19. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation.
    Oon YL, Ong SA, Ho LN, Wong YS, Oon YS, Lehl HK, Thung WE.
    Bioresour Technol; 2015 Jun 20; 186():270-275. PubMed ID: 25836035
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.